首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BiTE molecules comprise a new class of bispecific single-chain antibodies redirecting previously unstimulated CD8+ and CD4+ T cells for the elimination of target cells. One example is MT103 (MEDI-538; bscCD19xCD3), a CD19-specific BiTE that can induce lysis of normal and malignant B cells at low picomolar concentrations, which is accompanied by T cell activation. Here, we explored in cell culture the impact of the glucocorticoid derivative dexamethasone on various activation parameters of human T cells in response to MT103. In case cytokine-related side effects should occur with BiTE molecules and other T cell-based approaches during cancer therapy it is important to understand whether glucocorticoids do interfere with the cytotoxic potential of T cells. We found that MT103 induced in the presence of target cells secretion by peripheral T cells of interleukin (IL)-2, tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), IL-6, IL-10 and IL-4 into the cell culture medium. Production of all studied cytokines was effectively reduced by dexamethasone at a concentration between 1 and 3x10(-7) M. In contrast, upregulation of activation markers CD69, CD25, CD2 and LFA-1 on both CD4+ and CD8+ T cells, and T cell proliferation were barely affected by the steroid hormone analogue. Most importantly, dexamethasone did not detectably inhibit the cytotoxic activity of MT103-activated T cells against a human B lymphoma line as investigated with lymphocytes from 12 human donors. Glucocorticoids thus qualify as a potential co-medication for therapeutic BiTE molecules and other cytotoxic T cell therapies for treatment of cancer.  相似文献   

3.
Bispecific antibodies (biAbs) that mediate cytotoxicity by recruiting and activating endogenous immune cells are an emerging class of next-generation antibody therapeutics. Of particular interest are biAbs of relatively small size (~50 kDa) that can redirect cytotoxic T cells through simultaneous binding of tumor cells. Here we describe a conceptually unique class of biAbs in which the tumor cell specificity of a humanized antibody fragment that recognizes CD3 on T cells is chemically programmed through a C-terminal selenocysteine (Sec) residue. We demonstrate that through chemically programmed specificity for integrin α(4)β(1) or folate receptor 1 (FOLR1), and common specificity for CD3, these hybrid molecules exert potent and specific in vitro and ex vivo cytotoxicity toward tumor cell lines and primary tumor cells in the presence of primary T cells. Importantly, the generic nature of chemical programming allows one to apply our approach to virtually any specificity, promising a broad utility of chemically programmed biAbs in cancer therapy.  相似文献   

4.
Background The HAMA response is a major challenge when murine antibodies are repeatedly administered for antibody directed enzyme prodrug therapy in vivo. In this study we have achieved humanization of the anti-γ-seminoprotein E4B7 murine mAb by guided selection. Methods Using optimal Ig Fab primers, human Fd and CL gene repertoires were amplified by RT-PCR from PBMCs of prostate cancer patients. The human Lc gene repertoire was first paired with the murine Fd gene of E4B7 mAb to construct a pComb3X hybrid Fab display library. This hybrid library was screened with purified γ-seminoprotein antigen. The human Fd gene repertoire was then paired with the selected human Lc to construct a fully human Fab library. After four more rounds of panning, completely human Fab antibodies specific for γ-seminoprotein were selected and further identified. Results First, using the E4B7 Fd gene as a template, light chain shuffling was achieved by panning the hybrid library. Then, using the selected Lc as a template, a human Fab antibody against γ-seminoprotein was produced through heavy chain Fd shuffling. Western blotting, ELISA, and flow cytometry results demonstrated that the resulting human Fab antibody resembled the parental E4B7 mAb in that they both recognized the same epitope with similar affinities. Fluorescent cell staining and immunohistochemistry analysis further confirmed that this newly constructed human anti-γ-seminoprotein Fab antibody indeed specifically bound prostate cancer cells and tissue. Conclusions Through guided-selection, we successfully produced a human anti-γ-seminoprotein Fab antibody. This work lays the foundation for optimal antibody-directed enzyme prodrug therapy of prostate cancer using a fully human Fab antibody. Zhang Qing and Zhang Si-He are co-first authors on the publication.  相似文献   

5.
抗体几何平均滴度计算中如何处理抗体阴性者?   总被引:1,自引:0,他引:1  
不同作者在计算抗体几何平均滴度(GMT)时,对抗体阴性者的处理方法不完全一致,共有三种:①将抗体阴性者的抗体滴度作为零纳入抗体GMT计算;②将抗体阴性者不纳入计算;③用阳性界值的1/2作为阴性者的抗体滴度纳入计算。统计分析国内11种医学杂志92篇文献发现,科研机构和医学院校多用第三种方法(57.14%),省级和地市县级单位多用第一种方法(44.87%)。作者比较分析了三种方法的计算结果及优劣,认为第一种方法较适宜。  相似文献   

6.
Antibodies are uniquely suited to serve essential roles in the human immune defense as they combine several specific functions in one hetero-oligomeric protein. Their constant regions activate effector functions and their variable domains provide a stable framework that allows incorporation of highly diverse loop sequences. The combination of non-germline DNA recombination and mutation together with heavy and light chain assembly allows developing variable regions that specifically recognize essentially any antigen they may encounter. However, this diversity also requires tailor-made mechanisms to guarantee that folding and association of antibodies is carefully this diversity also requires tailor-made mechanisms to guarantee that folding and association of antibodies is carefully controlled before the protein is secreted from a plasma cell. Accordingly, the generic immunoglobulin fold β-barrel structure of antibody domains has been fine-tuned during evolution to fit the different requirements. Work over the past decades has identified important aspects of the folding and assembly of antibody domains and chains revealing domain specific variations of a general scheme. The most striking is the folding of an intrinsically disordered antibody domain in the context of its partner domain as the basis for antibody assembly and its control on the molecular level in the cell. These insights have not only allowed a better understanding of the antibody folding process but also provide a wealth of opportunities for rational optimization of antibody molecules.  相似文献   

7.
Monoclonal antibody therapy of cancer   总被引:10,自引:0,他引:10  
The most significant recent advances in the application of monoclonal antibodies (mAbs) to oncology have been the introduction and approval of bevacizumab (Avastin), an anti-vascular endothelial growth factor antibody, and of cetuximab (Erbitux), an anti-epidermal growth factor antibody. In combination with standard chemotherapy regimens, bevacizumab significantly prolongs the survival of patients with metastatic cancers of the colorectum, breast and lung. Cetuximab, used alone or with salvage chemotherapy, produces clinically meaningful anti-tumor responses in patients with chemotherapy-refractory cancers of the colon and rectum. In addition, the anti-HER2/neu antibody trastuzumab (Herceptin), in combination with standard adjuvant chemotherapy, has been shown to reduce relapses and prolong disease-free and overall survival in high-risk patients after definitive local therapy for breast cancer. These exciting recent results provide optimism for the development of mAbs that bind novel targets, exploit novel mechanisms of action or possess improved tumor targeting. Progress in the clinical use of radioimmunoconjugates remains hindered by complexity of administration, toxicity concerns and insufficiently selective tumor targeting.  相似文献   

8.
Diabodies (Dbs) and tandem single-chain variable fragments (taFv) are the most widely used recombinant formats for constructing small bispecific antibodies. However, only a few studies have compared these formats, and none have discussed their binding kinetics and cross-linking ability. We previously reported the usefulness for cancer immunotherapy of a humanized bispecific Db (hEx3-Db) and its single-chain format (hEx3-scDb) that target epidermal growth factor receptor and CD3. Here, we converted hEx3-Db into a taFv format to investigate how format affects the function of a small bispecific antibody; our investigation included a cytotoxicity assay, surface plasmon resonance spectroscopy, thermodynamic analysis, and flow cytometry. The prepared taFv (hEx3-taFv) showed an enhanced cytotoxicity, which may be attributable to a structural superiority to the diabody format in cross-linking target cells but not to differences in the binding affinities of the formats. Comparable cross-linking ability for soluble antigens was observed among hEx3-Db, hEx3-scDb, and hEx3-taFv with surface plasmon resonance spectroscopy. Furthermore, drastic increases in cytotoxicity were found in the dimeric form of hEx3-taFv, especially when the two hEx3-taFv were covalently linked. Our results show that converting the format of small bispecific antibodies can improve their function. In particular, for small bispecific antibodies that target tumor and immune cells, a functional orientation that avoids steric hindrance in cross-linking two target cells may be important in enhancing the growth inhibition effect.  相似文献   

9.
One of the promising methods of preparing antibody arrays is immobilizing antibodies with protein A or protein G, each of which binds specifically to the heavy chain constant (Fc) region of immunoglobulin G (IgG). In this system, antibody immobilization efficiency depends on the number of active Fc binding proteins that need to be immobilized on the surface. Here we have designed and constructed an Fc binding protein with a self-adhering ability that can be immobilized on the hydrophobic surface by simple adsorption. It consists of an Fc binding domain of protein G (G3) and hydrophobic domain of elastin (E72). Direct observation revealed its self-adhering ability on the hydrophobic surface. The enzyme-linked immunosorbent assay (ELISA) showed that it retained antibody binding ability on the surface. The antibody array model was prepared on a hydrophobic microwell glass slide with E72G3, which specifically detect the antigen with a sevenfold greater sensitivity than the G3-treated slide. These results suggest that the E72G3 is useful for simple and effective immobilization of antibodies and can be used to fabricate any immuno devices.  相似文献   

10.
Adoptive T cell therapy of solid cancers   总被引:2,自引:0,他引:2  
The development of immune-based approaches for the treatment of cancer has been actively investigated for many years. One strategy that has emerged as a potentially effective strategy for the treatment of aggressive established malignancies is adoptive T cell therapy. The power of this approach has been repeatedly observed in preclinical animal models. However, moving from homogeneous animal models to the heterogeneous human clinical setting has been very difficult. It is only in recent times that we have been able to pinpoint the problems of the clinical translation of adoptive T cell therapy. Some of the major problems are sources of tumor-specific T cells, ex vivo expansion, persistence, and anti-tumor activity. This review overviews the nature of these problems and some of the emerging solutions. This article is a symposium paper from the conference “Progress in Vaccination against Cancer 2004 (PIVAC 4)”, held in Freudenstadt-Lauterbad, Black Forest, Germany, on 22–25 September 2004 Grant support: This grant was supported by K01-CA100764 (KLK) and R01-CA85374 (MLD)  相似文献   

11.
A murine monoclonal antibody MLS102 recognizes sialosyl-Tn antigen in mucin and immunohistochemically reacts with more than 80% of colorectal cancer tissues. The purpose of this study was to assess the usefulness of this monoclonal antibody for the immunoscintigraphy of colorectal cancer. Planar and SPECT images were obtained on day 2 or day 3 after injection of 2 mg and 74 MBq111In-labeled MLS102 antibody into 17 patients with colorectal cancer. Nine of 11 primary tumors and 4 of 6 locally recurrent tumors were detected. Positive images were obtained in all tumors larger than 4.5×2.7 cm. Three tumors of less than 2.5 cm and 1 recurrent tumor, which was missed by other imaging modalities, were negative. There were no adverse reactions. Human anti-(mouse Ig) antibody developed in 4 patients. Although improvement of detectability for smaller tumors needs to be pursued, the antibody MLS102 is potentially promising for use in immunoscintigraphy of colorectal cancer.  相似文献   

12.
The epidermal growth factor receptor (EGFR) and the insulin-like growth factor-1 receptor (IGF-1R) play critical roles in tumor growth, providing a strong rationale for the combined inhibition of IGF-1R and EGFR signaling in cancer therapy. We describe the design, affinity maturation, in vitro and in vivo characterization of the bispecific anti-IGF-1R/EGFR antibody XGFR*. XGFR* is based on the bispecific IgG antibody XGFR, which enabled heterodimerization of an IGF-1R binding scFab heavy chain with an EGFR-binding light and heavy chain by the “knobs-into-holes” technology. XGFR* is optimized for monovalent binding of human EGFR and IGF-1R with increased binding affinity for IGF-1R due to affinity maturation and highly improved protein stability to oxidative and thermal stress. It bears an afucosylated Fc-portion for optimal induction of antibody-dependent cell-mediated cytotoxicity (ADCC). Stable Chinese hamster ovary cell clones with production yields of 2–3 g/L were generated, allowing for large scale production of the bispecific antibody. XGFR* potently inhibits EGFR- and IGF-1R-dependent receptor phosphorylation, reduces tumor cell proliferation in cells with heterogeneous levels of IGF-1R and EGFR receptor expression and induces strong ADCC in vitro. A comparison of pancreatic and colorectal cancer lines demonstrated superior responsiveness to XGFR*-mediated signaling and tumor growth inhibition in pancreatic cancers that frequently show a high degree of IGF-1R/EGFR co-expression. XGFR* showed potent anti-tumoral efficacy in the orthotopic MiaPaCa-2 pancreatic xenograft model, resulting in nearly complete tumor growth inhibition with significant number of tumor remissions. In summary, the bispecific anti-IGF-1R/EGFR antibody XGFR* combines potent signaling and tumor growth inhibition with enhanced ADCC induction and represents a clinical development candidate for the treatment of pancreatic cancer.  相似文献   

13.
The anti-prion protein (PrP) monoclonal antibody T2 has previously been prepared using PrP-knockout mice immunized with mouse recombinant PrP residues 121-231, however its interaction mechanism to PrP antigen has not been cleared. Here we identified and characterized the epitope of T2 antibody. The competitive ELISA with 20-mer synthetic peptides derived from PrP121-231 showed that T2 antibody had no affinity for these peptides. The analysis with deletion mutants of PrP revealed that 10 amino acids in the N terminus and 66 amino acids in the C terminus of PrP121-231 were necessary for reactivity with T2. Two far regions are necessary for complete affinity of the T2 antibody for PrP; either region alone is not sufficient to retain the affinity. The epitope recognized by T2 antibody is discontinuous and conformational. We examined the effect of disulfide bond and salt bridges. Alkylation of cysteine residues in C terminus of PrP121-231, which breaks a disulfide bond and disrupts the structure, had diminished the reactivity. Mutations induced in the PrP121-231 to break the disulfide bond or salt bridges, markedly had reduced the reactivity with T2 antibody. It suggests that T2 antibody recognized the structure maintained by the disulfide bond and salt bridges.  相似文献   

14.
Antibody-based detection systems are widely used, but in the cases of immunoprecipitations and enzyme-linked immunoassays, they can be laborious. These techniques require the preparation of at least two kinds of non-cross-reactive immunoglobulin Gs (IgGs), usually made from different species against the single target molecule. Aptamers composed of nucleic acids possess strict recognition ability for the target molecule's three-dimensional structure and, thus, are considered to act like IgG. In this study, experimental trials were designed to combine the advantages of IgG and aptamers. For this purpose, aptamers against rabbit IgG were identified by in vitro selection. One of the obtained aptamers had a dissociation constant lower than 15 pM to the rabbit IgG. It bound specifically to the constant region of the rabbit IgG, and no binding was observed with mouse or goat IgG. Moreover, this aptamer recognized only the native form of rabbit IgG and could not bind the sodium dodecyl sulfate (SDS)-denatured form. These features show the advantage of using the aptamer as a secondary probing agent rather than the usual secondary antibodies.  相似文献   

15.
Successful treatment of cancer patients with a combination of monoclonal antibodies (mAb) and chemotherapeutic drugs has spawned various other forms of additional combination therapies, including vaccines or adoptive lymphocyte transfer combined with chemotherapeutics. These therapies were effective against established tumors in animal models and showed promising results in initial clinical trials in cancer patients, awaiting testing in larger randomized controlled studies. Although combination between immunotherapy and chemotherapy has long been viewed as incompatible as chemotherapy, especially in high doses meant to increase anti-tumor efficacy, has induced immunosuppression, various mechanisms may explain the reported synergistic effects of the two types of therapies. Thus direct effects of chemotherapy on tumor or host environment, such as induction of tumor cell death, elimination of regulatory T cells, and/or enhancement of tumor cell sensitivity to lysis by CTL may account for enhancement of immunotherapy by chemotherapy. Furthermore, induction of lymphopenia by chemotherapy has increased the efficacy of adoptive lymphocyte transfer in cancer patients. On the other hand, immunotherapy may directly modulate the tumor’s sensitivity to chemotherapy. Thus, anti-tumor mAb can increase the sensitivity of tumor cells to chemotherapeutic drugs and patients treated first with immunotherapy followed by chemotherapy showed higher clinical response rates than patients that had received chemotherapy alone. In conclusion, combination of active specific immunotherapy or adoptive mAb or lymphocyte immunotherapy with chemotherapy has great potential for the treatment of cancer patients which needs to be confirmed in larger controlled and randomized Phase III trials.  相似文献   

16.
Despite the success of mAb and bispecific (bs)Ab in the treatment of certain malignancies, there is still considerable uncertainty about the most appropriate format in which they should be used. In the current work we have investigated a panel of bsAb [IgG and F(ab)2] with dual specificity for T cells and neoplastic B cells. Throughout this work, anti-CD2 or anti-CD3 were used to bind the mouse T cells, and antibodies to surface IgM idiotype (Id), CD19, CD22, or MHC class II were used to target mouse B cell lymphomas BCL1 or A31. In vitro, killing was measured in a conventional cytotoxicity assay using 51Cr-labelled A31 and BCL1 cells as targets and activated mouse splenocytes as effectors. bsAb showed a wide range of cytotoxic activities, which could be ranked in the following order: [anti-CD3×anti-class-II]>[anti-CD3×anti-CD19] >[anti-CD3×anti-Id]>[anti-CD3×anti-CD22], with the [anti-CD2×anti-Id] derivative showing relatively little cytotoxic activity. This hierarchy of activity indicates some correlation with the binding activity of the bsAb on target cells, but showed a much stronger parallel with the tendency of the anti-(target cells) mAb to undergo antigenic modulation (less modulation, more killing). In vivo, the situation was completely different and only the anti-ld derivatives, [anti-CD3×anti-ld] and [anti-CD2×anti-ld], were effective in prolonging the survival of tumour-bearing animals. Under optimal conditions Id-positive tumour was eradicated with a single treatment of bsAb. We conclude from this work that the target cell specificity of a bsAb is critical in determining therapeutic outcome and that in vitro cytotoxicity assays do not predict in vivo activity. Accepted: 14 October 1997  相似文献   

17.
The rationale for the use of T lymphocytes to fight cancer is the immunogenicity of tumor cells. T cells are capable to recognize and finally to kill tumor cells. Adoptive cell transfer therapies provide the opportunity to overcome tolerogenic mechanisms by enabling the selection and activation of highly reactive T cell subpopulations and by manipulation of the host environment into which the T cells are introduced. The aim of this article is to review the possibilities, limitations and recent clinical experience with this novel anticancer treatment, namely with adoptive immunotherapy using antigen-specific T cells.  相似文献   

18.
BACKGROUND: Catumaxomab is an antibody that binds with one arm epithelial cell adhesion molecule (EpCAM) positive tumors and with the other arm CD3+ T cells. Intravenous application of therapeutic antibodies may result in intravascular cytokine release. AIM: In this pilot trial we assessed whether cytokine release can be controlled by ex vivo cell opsonization and cytokine wash-out before administration of catumaxomab, preserving its anti-cancer activity. In addition, preliminary data on safety of and clinical response to catumaxomab coated autologous immune cells were acquired. METHODS: Peripheral blood mononuclear cells (PBMNC) of four patients with recurrent head and neck carcinoma were collected by leukapheresis, incubated ex vivo with catumaxomab for 24 h and cleared from released cytokines. Each patient received an escalated number of antibody-coated PBMNC equivalent to 1 x 10(4), 1 x 10(5), 1 x 10(6) and 1 x 10(7) CD3(+) cells/kgBW intravenously at bi-weekly intervals. RESULTS: After opsonization, PBMNC released substantial amounts of interferon gamma (IFNgamma) and tumor necrosis factor alpha (TNFalpha) in vitro, which were removed before administration. Catumaxomab up-regulated CD25, CD69, and CD83 on PBMNC, and catumaxomab loaded PBMNC released IFNgamma and granzyme B when coincubated with EpCAM(+) BHY cells, suggesting cell activation and target directed biological activity. During the study period, one patient died of aspiration pneumonia and one patient needed a tracheotomy. Treatment related adverse events (AE) occurred at the highest cell dose in two patients, whereas 1 x 10(6) loaded CD3(+) cells/kgBW were well tolerated by all patients. One patient showed stable disease for 6 months and one patient is in complete remission for 27 months. CONCLUSION: Ex vivo opsonization of PBMNC with catumaxomab provided biologically active, tumor targeting cells. Extracorporeal PBMNC coating may be an option to control intravascular cytokine release induced by therapeutic antibodies.  相似文献   

19.
Adoptive transfer of antigen-specific T cells has recently shown therapeutic successes in the treatment of viral infections and tumors. T cells specific for the antigen of interest can be generated in vitro, and adoptively transferred back to provide patients with large numbers of immune-competent T cells. Adoptive T cell therapy, however, is a patient-tailored treatment that unfortunately is not universally applicable to treat viral infections and tumors. We and others have demonstrated that the transfer of genes encoding antigen-specific receptors into T cells (i.e., genetic retargeting) represents an attractive alternative to induce antigen-specific immunity. Currently, we evaluate this concept in a clinical protocol to treat patients with metastatic renal cell cancer (RCC) using autologous RCC-specific gene-modified T lymphocytes.  相似文献   

20.
Producing monoclonal antibodies includes their efficient and simple purification. Growing hybridoma cells in media containing Prolifix, an alternative plant-based substitute for serum, provides supernatants containing large amounts of antibodies and defined low molecular weight additives. Antibodies can easily be separated from these compounds by fast ultrafiltration. However, DNA originating from lysed cells is present in substantial amounts and must be removed for most antibody applications. The present communication provides a fast, cheap, and efficient separation method by precipitating the DNA from a phosphate buffered solution with manganese chloride. Resulting antibodies have a high purity and an unchanged bioactivity. The method is especially valuable for antibodies which lose bioactivity by interactions with chromatographic matrices (as, for example, Sepharose) and can be used for various antibody isotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号