首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of straight compartment boundaries separating groups of cells with distinct fates and functions is an evolutionarily conserved strategy during animal development. The physical mechanisms that shape compartment boundaries have recently been further elucidated, however, the molecular mechanisms that underlie compartment boundary formation and maintenance remain poorly understood. Here, we report on the outcome of an RNA interference screen aimed at identifying novel genes involved in maintaining the straight shape of the anteroposterior compartment boundary in Drosophila wing imaginal discs. Out of screening 3114 transgenic RNA interference lines targeting a total of 2863 genes, we identified a single novel candidate that interfered with the formation of a straight anteroposterior compartment boundary. Interestingly, the targeted gene encodes for the Eph receptor tyrosine kinase, an evolutionarily conserved family of signal transducers that has previously been shown to be important for maintaining straight compartment boundaries in vertebrate embryos. Our results identify a hitherto unknown role of the Eph receptor tyrosine kinase in Drosophila and suggest that Eph receptors have important functions in shaping compartment boundaries in both vertebrate and insect development.  相似文献   

2.
When organs and tissues acquire their characteristic shapes and functions during early development, boundaries are established that distinguish between and delimit distinct areas. Such boundaries are not mere edges, but also play important roles as secondary signaling centers in subsequent morphogenesis. Following on pioneering findings provided by studies in Drosophila, the mechanisms underlying boundary formation in vertebrate embryogenesis have attracted the interest of an increasing number of researchers. Somitogenesis and brain development, in particular, serve as model systems for the study of the molecular and cellular events occurring at developing boundaries. Recent findings allow us to draw some general pictures concerning the shared mechanisms that participate in these processes of organogenesis, in which Notch, Eph/ephrin and cadherin-mediated signaling are among the main key regulators.  相似文献   

3.
4.
The formation of morphological boundaries between developing tissues is an integral mechanism for generating body forms and functions. For the molecular and cellular studies of how such morphological boundaries form, somitogenesis serves as a particularly good model. When an intersomitic boundary forms in the anterior end of the presomitic mesoderm, cells undergo dynamic behaviors including a separation of tissues and changes in cell shape from mesenchymal to epithelial. Moreover, these events occur repeatedly and periodically. We here overview the inductive events that have recently been shown to play important roles in the formation of the intersomitic fissures. We then discuss molecular mechanisms underlying these inductive actions, and also discuss how the fissure formation is interpreted by the subsequent morphogenesis, including cell epithelialization and the acquisition of anterior–posterior identities in the newly formed somite. Thus, somitogenesis provides a unique model to understand how sequentially occurring processes of morphogenesis are coordinated in a 3-D environment.  相似文献   

5.
6.
Compartment boundaries have fascinated biologists for more than 25 years. We now know that these boundaries play important roles in pattern formation, yet how these boundaries are established during development remained a mystery. Here, we describe the exciting progress that has been made recently towards elucidating the mechanisms of boundary formation.  相似文献   

7.
According to a recent model, the cortical tractor model, neural fold and neural crest formation occurs at the boundary between neural plate and epidermis because random cell movements become organized at this site. If this is correct, then a fold should form at any boundary between epidermis and neural plate. To test that proposition, we created new boundaries in axolotl embryos by juxtaposing pieces of neural plate and epidermis that would not normally participate in fold formation. These boundaries were examined superficially and histologically for the presence of folds, permitting the following observations. Folds form at each newly created boundary, and as many folds form as there are boundaries. When two folds meet they fuse into a hollow "tube" of neural tissue covered by epidermis. Sections reveal that these ectopic folds and "tubes" are morphologically similar to their natural counterparts. Transplanting neural plate into epidermis produces nodules of neural tissue with central lumens and peripheral nerve fibers, and transplanting epidermis into neural plate causes the neural tube and the dorsal fin to bifurcate in the region of the graft. Tissue transplanted homotypically as a control integrates into the host tissue without forming folds. When tissue from a pigmented embryo is transplanted into an albino host, the presence of pigment allows the donor cells to be distinguished from those of the host. Mesenchymal cells and melanocytes originating from neural plate transplants indicate that neural crest cells form at these new boundaries. Thus, any boundary between neural plate and epidermis denotes the site of a neural fold, and the behavior of cells at this boundary appears to help fold the epithelium. Since folds can form in ectopic locations on an embryo, local interactions rather than classical neural induction appear to be responsible for the formation of neural folds and neural crest.  相似文献   

8.
The vertebrate hindbrain is segmented into rhombomeres (r) initially defined by distinct domains of gene expression. Previous studies have shown that noise-induced gene regulation and cell sorting are critical for the sharpening of rhombomere boundaries, which start out rough in the forming neural plate (NP) and sharpen over time. However, the mechanisms controlling simultaneous formation of multiple rhombomeres and accuracy in their sizes are unclear. We have developed a stochastic multiscale cell-based model that explicitly incorporates dynamic morphogenetic changes (i.e. convergent-extension of the NP), multiple morphogens, and gene regulatory networks to investigate the formation of rhombomeres and their corresponding boundaries in the zebrafish hindbrain. During pattern initiation, the short-range signal, fibroblast growth factor (FGF), works together with the longer-range morphogen, retinoic acid (RA), to specify all of these boundaries and maintain accurately sized segments with sharp boundaries. At later stages of patterning, we show a nonlinear change in the shape of rhombomeres with rapid left-right narrowing of the NP followed by slower dynamics. Rapid initial convergence improves boundary sharpness and segment size by regulating cell sorting and cell fate both independently and coordinately. Overall, multiple morphogens and tissue dynamics synergize to regulate the sizes and boundaries of multiple segments during development.  相似文献   

9.
10.
Boundary formation plays a central role in differentiating the flanking regions that give rise to discrete tissues and organs during early development. We have studied mechanisms by which a morphological boundary and tissue separation are regulated by examining chicken somite segmentation as a model system. By transplanting a small group of cells taken from a presumptive border into a non-segmentation site, we have found a novel inductive event where posteriorly juxtaposed cells to the next-forming border instruct the anterior cells to become separated and epithelialized. We have further studied the molecular mechanisms underlying these interactions by focusing on Lunatic fringe, a modulator of Notch signaling, which is expressed in the region of the presumptive boundary. By combining DNA in ovo electroporation and embryonic transplantation techniques we have ectopically made a sharp boundary of Lunatic fringe activity in the unsegmented paraxial mesoderm and observed a fissure formed at the interface. In addition, a constitutive active form of Notch mimics this instructive phenomenon. These suggest that the boundary-forming signals emanating from the posterior border cells are mediated by Notch, the action of which is confined to the border region by Lunatic fringe within the area where mRNAs of Notch and its ligand are broadly expressed in the presomitic mesoderm.  相似文献   

11.
During segmentation of the vertebrate hindbrain, a distinct population of boundary cells forms at the interface between each segment. Little is known regarding mechanisms that regulate the formation or functions of these cells. We have investigated a potential role of Notch signaling and find that in the zebrafish hindbrain, radical fringe is expressed in boundary cells and delta genes are expressed adjacent to boundaries, consistent with a sustained activation of Notch in boundary cells. Mosaic expression experiments reveal that activation of the Notch/Su(H) pathway regulates cell affinity properties that segregate cells to boundaries. In addition, Notch signaling correlates with a delayed neurogenesis at hindbrain boundaries and is required to inhibit premature neuronal differentiation of boundary cells. These findings reveal that Notch activation couples the regulation of location and differentiation in hindbrain boundary cells. Such coupling may be important for these cells to act as a stable signaling center.  相似文献   

12.
In addition to being an advantageous model to investigate general molecular mechanisms of organ formation, the tooth is a distinct target organ for peripheral nerve innervation. These nerves are required for the function and protection of the teeth and, as shown in fish, also for their regeneration. This review focuses on recent findings of the local tissue interactions and molecular signaling mechanisms that regulate the early nerve arrival and patterning of mouse mandibular molar tooth sensory innervation.  相似文献   

13.
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. Physical mechanisms shaping compartment boundaries were recently explored in Drosophila, where actomyosin‐based barriers were revealed to be important for keeping cells apart. In vertebrates, interhombomeric boundaries are straight interfaces, which often serve as signaling centers that pattern the surrounding tissue. Here, we demonstrate that in the hindbrain of zebrafish embryos cell sorting sharpens the molecular boundaries and, once borders are straight, actomyosin barriers are key to keeping rhombomeric cells segregated. Actomyosin cytoskeletal components are enriched at interhombomeric boundaries, forming cable‐like structures in the apical side of the neuroepithelial cells by the time morphological boundaries are visible. When myosin II function is inhibited, cable structures do not form, leading to rhombomeric cell mixing. Downregulation of EphA4a compromises actomyosin cables and cells with different rhombomeric identity intermingle, and the phenotype is rescued enhancing myosin II activity. Moreover, enrichment of actomyosin structures is obtained when EphA4 is ectopically expressed in even‐numbered rhombomeres. These findings suggest that mechanical barriers act downstream of EphA/ephrin signaling to segregate cells from different rhombomeres.  相似文献   

14.
Milán M  Weihe U  Pérez L  Cohen SM 《Cell》2001,106(6):785-794
Mechanisms to segregate cell populations play important roles in tissue patterning during animal development. Rhombomeres and compartments in the ectoderm and imaginal discs of Drosophila are examples in which initially homogenous populations of cells come to be separated by boundaries of lineage restriction. Boundary formation depends in part on signaling between the distinctly specified cell populations that comprise compartments and in part on formation of affinity boundaries that prevent intermingling of these cell populations. Here, we present evidence that two transmembrane proteins with leucine-rich repeats, known as Capricious and Tartan, contribute to formation of the affinity boundary between dorsal and ventral compartments during Drosophila wing development.  相似文献   

15.
16.
During embryonic development, a number of tissues are patterned by their subdivision into domains with distinct regional identity. An important question is how sharp interfaces are established and maintained between adjacent domains despite the potential for scrambling due to cell intermingling during tissue growth. Two mechanisms have been found to underlie the maintenance of sharp interfaces: the specific restriction of cell mixing across boundaries, or the switching of identity of cells that cross between domains. We review the evidence for these mechanisms at distinct boundaries in the developing vertebrate central nervous system, and discuss what is known about their molecular mediators.  相似文献   

17.
Development in the chick hindbrain is founded on a segmented pattern. Groups of cells are allocated to particular segmental levels early in development, the cells of each segment (rhombomere) mixing freely with each other, but not with those of adjacent segments. After rhombomere formation, cells in the boundary regions become increasingly specialised. Rhombomeres are thus separate territories that will ultimately pursue different developmental fates. We are investigating the mechanisms that establish and maintain the pattern of rhombomeres and their boundaries. Donor-to-host transplantation experiments were used to confront tissue from different axial levels within the hindbrain. The frequency of boundary regeneration and patterning in the hindbrain was then assessed, based on gross morphology, arrangement of motor neurons and immunohistochemistry. We found that when rhombomeres from adjacent positions or positions three rhombomeres distant from one another were confronted, a normal boundary was invariably reconstructed. Juxtaposition of rhombomere 5 with 7 also yielded a new boundary. By contrast, donor and host tissue of the same positional origin combined without forming a boundary. The same result was obtained in combinations of rhombomeres 3 and 5. Confrontation of tissue from even-numbered rhombomeres 4 with 6 or 2 with 4 also failed to regenerate a boundary in the majority of cases. These results suggest that cell surface properties vary according to rhombomeric level in the hindbrain, and may support the idea of a two-segment periodicity.  相似文献   

18.
The developing wing disc of Drosophila is divided into distinct lineage-restricted compartments along both the anterior/posterior (A/P) and dorsal/ventral (D/V) axes. At compartment boundaries, morphogenic signals pattern the disc epithelium and direct appropriate outgrowth and differentiation of adult wing structures. The mechanisms by which affinity boundaries are established and maintained, however, are not completely understood. Compartment-specific adhesive differences and inter-compartment signaling have both been implicated in this process. The selector gene apterous (ap) is expressed in dorsal cells of the wing disc and is essential for D/V compartmentalization, wing margin formation, wing outgrowth and dorsal-specific wing structures. To better understand the mechanisms of Ap function and compartment formation, we have rescued aspects of the ap mutant phenotype with genes known to be downstream of Ap. We show that Fringe (Fng), a secreted protein involved in modulation of Notch signaling, is sufficient to rescue D/V compartmentalization, margin formation and wing outgrowth when appropriately expressed in an ap mutant background. When Fng and alphaPS1, a dorsally expressed integrin subunit, are co-expressed, a nearly normal-looking wing is generated. However, these wings are entirely of ventral identity. Our results demonstrate that a number of wing development features, including D/V compartmentalization and wing vein formation, can occur independently of dorsal identity and that inter-compartmental signaling, refined by Fng, plays the crucial role in maintaining the D/V affinity boundary. In addition, it is clear that key functions of the ap selector gene are mediated by only a small number of downstream effectors.  相似文献   

19.
《Fly》2013,7(3):241-245
The subdivision of proliferating tissues into groups of non-intermingling sets of cells, termed compartments, is a common process of animal development. Signaling between adjacent compartments induces the local expression of morphogens that pattern the surrounding tissue. Sharp and straight boundaries between compartments stabilize the source of such morphogens during tissue growth and, thus, are of crucial importance for pattern formation. Signaling pathways required to maintain compartment boundaries have been identified, yet the physical mechanisms that maintain compartment boundaries remained elusive. Recent data now show that a local increase in actomyosin-based mechanical tension on cell bonds is vital for maintaining compartment boundaries in Drosophila.  相似文献   

20.
The most obvious segmental structures in the vertebrate embryo are somites: transient structures that give rise to vertebrae and much of the musculature. In zebrafish, most somitic cells give rise to long muscle fibers that are anchored to intersegmental boundaries. Therefore, this boundary is analogous to the mammalian tendon in that it transduces muscle-generated force to the skeletal system. We have investigated interactions between somite boundaries and muscle fibers. We define three stages of segment boundary formation. The first stage is the formation of the initial epithelial somite boundary. The second "transition" stage involves both the elongation of initially round muscle precursor cells and somite boundary maturation. The third stage is myotome boundary formation, where the boundary becomes rich in extracellular matrix and all muscle precursor cells have elongated to form long muscle fibers. It is known that formation of the initial epithelial somite boundary requires Notch signaling; vertebrate Notch pathway mutants show severe defects in somitogenesis. However, many zebrafish Notch pathway mutants are homozygous viable suggesting that segmentation of their larval and adult body plans at least partially recovers. We show that epithelial somite boundary formation and slow-twitch muscle morphogenesis are initially disrupted in after eight (aei) mutant embryos (which lack function of the Notch ligand, DeltaD); however, myotome boundaries form later ("recover") in a Hedgehog-dependent fashion. Inhibition of Hedgehog-induced slow muscle induction in aei/deltaD and deadly seven (des)/notch1a mutant embryos suggests that slow muscle is necessary for myotome boundary recovery in the absence of initial epithelial somite boundary formation. Because we have previously demonstrated that slow muscle migration triggers fast muscle cell elongation in zebrafish, we hypothesize that migrating slow muscle facilitates myotome boundary formation in aei/deltaD mutant embryos by patterning coordinated fast muscle cell elongation. In addition, we utilized genetic mosaic analysis to show that somite boundaries also function to limit the extent to which fast muscle cells can elongate. Combined, our results indicate that multiple interactions between somite boundaries and muscle fibers mediate zebrafish segmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号