首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Recent studies have shown that block wnt/β-catenin signaling pathway is integrant for cardiomyocytes differentiation from bone marrow mesenchymal stem cells (MSCs). By transducing the MSCs with lentivirus which contain β-catenin interference RNA, we screened out the non β-catenin expression clone. In the establishment of knockdown β-catenin in MSCs, we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (salB), and cardiomyocytes lysis medium (CLM) in inducing MSCs to differentiate into cardiomyocyte-like cells. A method for culturing MSCs and cardiomyocytes was established. Purified MSCs were investigated by flow cytometry. The MSCs were positive for CD90 and CD29, but negative for CD34 and CD45. Meanwhile, the cardiomyocytes contracted spontaneously after 24 h of seeding into the plates. The fourth-passage non-β-catenin expression MSCs were divided into eight groups: control group, 5-aza, salB, CLM, 5-aza + salB, 5-aza + CLM, salB + CLM, and 5-aza + salB + CLM. The gene and protein expression of cTnT, α-actin, β-myosin, β-catenin, and GSK-3β were detected by quantitative real-time PCR and Western blotting. Our results showed that cTnT expression in 5-aza + salB + CLM group was ninefold higher than in the control group in the non-β-catenin MSCs model, implying that cardiomyocytes differentiation from MSCs is an extremely complicated process and it is necessary to consider the internal and external environmental conditions, such as suitable pharmaceutical inducers, cardiomyocytes microenvironments, inhibition of the negative signaling pathway and so on.  相似文献   

2.

Background

Transplanted mesenchymal stem cells (MSC) can differentiate into cardiac cells that have the potential to contribute to heart repair following ischemic injury. Overexpression of GATA-4 can significantly increase differentiation of MSC into cardiomyocytes (CM). However, the specific impact of GATA-4 overexpression on the electrophysiological properties of MSC-derived CM has not been well documented.

Methods

Adult rat bone marrow MSC were retrovirally transduced with GATA-4 (MSCGATA-4) and GFP (MSCNull) and subsequently co-cultured with neonatal rat ventricular cardiomyocytes (CM). Electrophysiological properties and mRNA levels of ion channels were assessed in MSC using patch-clamp technology and real-time PCR.

Results

MSCGATA-4 exhibited higher levels of the TTX-sensitive Na+ current (INa.TTX), L-type calcium current (ICa.L), transient outward K+ current (Ito), delayed rectifier K+ current (IKDR) and inwardly rectifying K+ current (IK1) channel activities reflective of electrophysiological characteristics of CM. Real-time PCR analyses showed that MSCGATA-4 exhibited upregulated mRNA levels of Kv1.2, Kv2.1, SCN2a1, CCHL2a, KV1.4 and Kir1.1 channels versus MSCNull. Interestingly, MSCGATA-4 treated with IGF-1 neutralizing antibodies resulted in a significant decrease in Kir1.1, Kv2.1, KV1.4, CCHL2a and SCN2a1 channel mRNA expression. Similarly, MSCGATA-4 treated with VEGF neutralizing antibodies also resulted in an attenuated expression of Kv2.1, Kv1.2, Kv1.4, Kir1.1, CCHL2a and SCN2a1 channel mRNAs.

Conclusions

GATA-4 overexpression increases Ito, IKDR, IK1, INa.TTX and ICa.L currents in MSC. Cytokine (VGEF and IGF-1) release from GATA-4 overexpressing MSC can partially account for the upregulated ion channel mRNA expression.

General significance

Our results highlight the ability of GATA4 to boost the cardiac electrophysiological potential of MSC.  相似文献   

3.
Transient outward K+ current (Ito) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K+ channel is an important component of Ito. The function and expression of Kv4.3 K+ channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. In this review, we summarized the changes of cardiac Kv4.3 K+ channel in heart diseases and discussed the potential role of Kv4.3 K+ channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, downregulation of Kv4.3 K+ channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca2+]i, activation of calcineurin and heart hypertrophy/heart failure. However, in canine and human, Kv4.3 K+ channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K+ channel/APD/[Ca2+]i pathway, there exits another mechanism of Kv4.3 K+ channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K+ channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII, which induces heart hypertrophy/heart failure. Upregulation of Kv4.3 K+ channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K+ channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K+ channel might be potentially harmful or beneficial to hearts through CaMKII.  相似文献   

4.
In contrast to terminally differentiated cardiomyocytes, relatively little is known about the characteristics of mammalian cardiac cells before the initiation of spontaneous contractions (precursor cells). Functional studies on these cells have so far been impossible because murine embryos of the corresponding stage are very small, and cardiac precursor cells cannot be identified because of the lack of cross striation and spontaneous contractions.In the present study, we have used the murine embryonic stem (ES, D3 cell line) cell system for the in vitro differentiation of cardiomyocytes. To identify the cardiac precursor cells, we have generated stably transfected ES cells with a vector containing the gene of the green fluorescent protein (GFP) under control of the cardiac α-actin promoter. First, fluorescent areas in ES cell–derived cell aggregates (embryoid bodies [EBs]) were detected 2 d before the initiation of contractions. Since Ca2+ homeostasis plays a key role in cardiac function, we investigated how Ca2+ channels and Ca2+ release sites were built up in these GFP-labeled cardiac precursor cells and early stage cardiomyocytes. Patch clamp and Ca2+ imaging experiments proved the functional expression of the L-type Ca2+ current (ICa) starting from day 7 of EB development. On day 7, using 10 mM Ca2+ as charge carrier, ICa was expressed at very low densities 4 pA/pF. The biophysical and pharmacological properties of ICa proved similar to terminally differentiated cardiomyocytes. In cardiac precursor cells, ICa was found to be already under control of cAMP-dependent phosphorylation since intracellular infusion of the catalytic subunit of protein kinase A resulted in a 1.7-fold stimulation. The adenylyl cyclase activator forskolin was without effect. IP3-sensitive intracellular Ca2+ stores and Ca2+-ATPases are present during all stages of differentiation in both GFP-positive and GFP-negative cells. Functional ryanodine-sensitive Ca2+ stores, detected by caffeine-induced Ca2+ release, appeared in most GFP-positive cells 1–2 d after ICa. Coexpression of both ICa and ryanodine-sensitive Ca2+ stores at day 10 of development coincided with the beginning of spontaneous contractions in most EBs.Thus, the functional expression of voltage-dependent L-type Ca2+ channel (VDCC) is a hallmark of early cardiomyogenesis, whereas IP3 receptors and sarcoplasmic Ca2+-ATPases are expressed before the initiation of cardiomyogenesis. Interestingly, the functional expression of ryanodine receptors/sensitive stores is delayed as compared with VDCC.  相似文献   

5.
Cardiac fibroblasts are involved in the maintenance of myocardial tissue structure. However, little is known about ion currents in human cardiac fibroblasts. It has been recently reported that cardiac fibroblasts can interact electrically with cardiomyocytes through gap junctions. Ca2+-activated K+ currents (I K[Ca]) of cultured human cardiac fibroblasts were characterized in this study. In whole-cell configuration, depolarizing pulses evoked I K(Ca) in an outward rectification in these cells, the amplitude of which was suppressed by paxilline (1 μM) or iberiotoxin (200 nM). A large-conductance, Ca2+-activated K+ (BKCa) channel with single-channel conductance of 162 ± 8 pS was also observed in human cardiac fibroblasts. Western blot analysis revealed the presence of α-subunit of BKCa channels. The dynamic Luo-Rudy model was applied to predict cell behavior during direct electrical coupling of cardiomyocytes and cardiac fibroblasts. In the simulation, electrically coupled cardiac fibroblasts also exhibited action potential; however, they were electrically inert with no gap-junctional coupling. The simulation predicts that changes in gap junction coupling conductance can influence the configuration of cardiac action potential and cardiomyocyte excitability. I k(Ca) can be elicited by simulated action potential waveforms of cardiac fibroblasts when they are electrically coupled to cardiomyocytes. This study demonstrates that a BKCa channel is functionally expressed in human cardiac fibroblasts. The activity of these BKCa channels present in human cardiac fibroblasts may contribute to the functional activities of heart cells through transfer of electrical signals between these two cell types.  相似文献   

6.
Summary Guard cells of higher plants control transpirational water loss and gas exchange for photosynthesis by opening and closing pores in the epidermis of the leaf. To power these turgordriven movements, guard cells accumulate (and lose) 200 to 400mm (1 to 3 pmol/cell) K+, fluxes thought to pass through K+ channels in the guard cells plasma membrane. Steady-state current-voltage (I–V) relations of intactVicia guard cells frequently show large, outward-going currents at potentials approaching 0 mV. Since this current could be carried by K+ channels, its pharmacology and dependence on external K+ (K v + ) has been examined under voltage clamp over an extended potential range. Measurements were carried out on cells which showed little evidence of primary electrogenic transport, thus simplifying analyses. Clamping these cells away from the free-running membrane potential (V m ) revealed an outward-rectifying current with instantaneous and time-dependent components, and sensitive to the K+ channel blocker tetraethylammonium chloride. The current declined also under metabolic blockade with NaCN and in the presence of diethylstilbesterol, responses which were attributed to secondary effects of these inhibitors. The putative K+ current rose with voltage positive toV m but it decayed over two voltage ranges, one negative toV m and one near +100 mV, to give steady-stateI–V relations with two regions of negative (slope) conductance. Voltage-dependent and kinetic characteristics of the current were affected by K v + and followed the K+ equilibrium potential. Against a (presumably) low background of primary ion transport, the K+ current contributed appreciably to charge balance atV m in 0.1mm as well as in 1 to 10mm K v + . Thus, gating of these K+ channels compensates for the prevailing K+ conditions to ensure net K+ movement out of the cell.  相似文献   

7.
Transient outward K+ current (Ito) plays a crucial role in the early phase of cardiac action potential repolarization. Kv4.3 K+ channel is an important component of Ito. The function and expression of Kv4.3 K+ channel decrease in variety of heart diseases, especially in heart hypertrophy/heart failure. In this review, we summarized the changes of cardiac Kv4.3 K+ channel in heart diseases and discussed the potential role of Kv4.3 K+ channel in heart hypertrophy/heart failure. In heart hypertrophy/heart failure of mice and rats, downregulation of Kv4.3 K+ channel leads to prolongation of action potential duration (APD), which is associated with increased [Ca2+]i, activation of calcineurin and heart hypertrophy/heart failure. However, in canine and human, Kv4.3 K+ channel does not play a major role in setting cardiac APD. So, in addition to Kv4.3 K+ channel/APD/[Ca2+]i pathway, there exits another mechanism of Kv4.3 K+ channel in heart hypertrophy and heart failure: downregulation of Kv4.3 K+ channels leads to CaMKII dissociation from Kv4.3–CaMKII complex and subsequent activation of the dissociated CaMKII, which induces heart hypertrophy/heart failure. Upregulation of Kv4.3 K+ channel inhibits CaMKII activation and its related harmful consequences. We put forward a new point-of-view that Kv4.3 K+ channel is involved in heart hypertrophy/heart failure independently of its electric function, and drugs inhibiting or upregulating Kv4.3 K+ channel might be potentially harmful or beneficial to hearts through CaMKII.  相似文献   

8.
Membrane potential and ionic currents were studied in cultured rabbit retinal pigment epithelial (RPE) cells using whole-cell patch clamp and perforated-patch recording techniques. RPE cells exhibited both outward and inward voltage-dependent currents and had a mean membrane capacitance of 26±12 pF (sd, n=92). The resting membrane potential averaged ?31±15 mV (n=37), but it was as high as ?60 mV in some cells. When K+ was the principal cation in the recording electrode, depolarization-activated outward currents were apparent in 91% of cells studied. Tail current analysis revealed that the outward currents were primarily K+ selective. The most frequently observed outward K+ current was a voltage- and time-dependent outward current (I K) which resembled the delayed rectifier K+ current described in other cells. I K was blocked by tetraethylammonium ions (TEA) and barium (Ba2+) and reduced by 4-aminopyridine (4-AP). In a few cells (3–4%), depolarization to ?50 mV or more negative potentials evoked an outwardly rectifying K+ current (I Kt) which showed more rapid inactivation at depolarized potentials. Inwardly rectifying K+ current (I KI) was also present in 41% of cells. I KI was blocked by extracellular Ba2+ or Cs+ and exhibited time-dependent decay, due to Na+ blockade, at negative potentials. We conclude that cultured rabbit RPE cells exhibit at least three voltage-dependent K+ currents. The K+ conductances reported here may provide conductive pathways important in maintaining ion and fluid homeostasis in the subretinal space.  相似文献   

9.
Compound ITH33/IQM9.21 (ITH/IQM) belongs to a new family of l-glutamic acid derivatives with antioxidant and neuroprotective properties on in vitro and in vivo models of stroke. Because neuronal damage after brain ischemia is tightly linked to excess Ca2+ entry and neuronal Ca2+ overload, we have investigated whether compound ITH/IQM antagonises the elevations of the cytosolic Ca2+ concentrations ([Ca2+]c) and the ensuing exocytotic responses triggered by depolarisation of bovine chromaffin cells. In fluo-4-loaded cell populations, ITH/IQM reduced the K+-evoked [Ca2+]c transients with an IC50 of 5.31 μM. At 10 μM, the compound decreased the amplitude and area of the Ca2+ transient elicited by challenging single fura-2-loaded cells with high K+, by 40% and 80%, respectively. This concentration also caused a blockade of K+-induced catecholamine release at the single-cell level (78%) and cell populations (55%). These effects are likely due to blockade of the whole-cell inward Ca2+ currents (IC50 = 6.52 μM). At 10 μM, ITH/IQM also inhibited the Ca2+-dependent outward K+ current, leaving untouched the voltage-dependent component of IK. The inward Na+ current was unaffected. Inhibition of depolarisation-elicited Ca2+ entry, [Ca2+]c elevation and exocytosis could contribute to the neuroprotective effects of ITH/IQM in vulnerable neurons undergoing depolarisation during brain ischemia.  相似文献   

10.
Heart cells from the clam Ruditapes decussatus were routinely cultured with a high level of reproducibility in sea water based medium. Three cell types attached to the plastic after 2 days and could be maintained in vitro for at least 1 month: epithelial-like cells, round cells and fibroblastic cells. Fibroblastic cells were identified as functional cardiomyocytes due to their spontaneous beating, their ultrastructural characteristics and their reactivity with antibodies against sarcomeric α-actinin, sarcomeric tropomyosin, myosin and troponin T-C. Patch clamp measurements allowed the identification of ionic currents characteristic of cardiomyocytes: a delayed potassium current (I K slow) strongly suppressed (95%) by tetraethylammonium (1 mM), a fast inactivating potassium current (I K fast) inhibited (50%) by 4 amino-pyridine at 1 mM and, at a lower level (34%) by TEA, a calcium dependent potassium current (I KCa) activated by strong depolarization. Three inward voltage activated currents were also characterized in some cardiomyocytes: L-type calcium current (I Ca) inhibited by verapamil at 5 × 10−4 M, T-type Ca2+ current, rapidly activated and inactivated, and sodium current (I Na) observed in only a few cells after strong hyperpolarization. These two currents did not seem to be physiologically essential in the initiation of the beatings of cardiomyocytes. Potassium currents were partially inhibited by tributyltin (TBT) (1 μM) but not by okadaic acid (two marine pollutants). DNA synthesis was also demonstrated in few cultured cells using BrdU (bromo-2′-deoxyuridine). Observed effects of okadaic acid and TBT demonstrated that cultured heart cells from clam Ruditapes decussatus can be used as an experimental model in marine toxicology.  相似文献   

11.
The efficacy and mechanism of -dendrotoxin (DTX) block of K+ channel currents in Vicia stomatal guard cells was examined. Currents carried by inward- and outward-rectifying K+ channels were determined under voltage clamp in intact guard cells, and block was characterized as a function of DTX and external K+ (K+) concentrations. Added to the bath, 0.1-30 nM DTX blocked the inward-rectifying K+ current (IK,in), but was ineffective in blocking current through the outward-rectifying K+ channels (IK,out) even at concentrations of 30 nM. DTX block was independent of clamp voltage and had no significant effect on the voltage-dependent kinetics for IK,in, neither altering its activation at voltages negative of –120 mV nor its deactivation at more positive voltages. No evidence was found for a use dependence to DTX action. Block of IK,in followed a simple titration function with an apparent K1/2 for block of 2.2 nM in 3 mm K o + . However, DTX block was dependent on the external K+ concentration. Raising K+ from 3 to 30 mm slowed block and resulted in a 60–70% reduction in its efficacy (apparent K i = 10 mm in 10 nm DTX). The effect of K+ in protecting I K,in was competitive with DTX and specific for permeant cations. A joint analysis of IK,in block with DTX and K+ concentration was consistent with a single class of binding sites with a K d for DTX of 240 pm. A K d of 410 m for extracellular K+ was also indicated. These results complement previous studies implicating a binding site requiring extracellular K+ (K1/2 1 mm) for IK,in activation; they parallel features of K+ channel block by DTX and related peptide toxins in many animal cells, demonstrating the sensitivity of plant plasma membrane K+ channels to nanomolar toxin concentrations under physiological conditions; the data also highlight one main difference: in the guard cells, DTX action appears specific to the K+ inward rectifier.We thank J.O. Dolly (Imperial, London) and S.M. Jarvis (University of Kent, Canterbury) for several helpful discussions. This work was supported by SERC grant GR/H07696 and was aided by equipment grants from the Gatsby Foundation, the Royal Society and the University of London Central Research Fund. G.O. was supported by an Ausbildungsstipendium (OB 85/1-1) from the Deutsche Forschungsgemeinschaft. F.A. holds a Sainsbury Studentship.  相似文献   

12.
Voltage-gated whole-cell currents were recorded from cultured microglial cells which had been developed in the presence of the macrophage/microglial growth factor granulocyte/macrophage colony-stimulating factor. Outward K+ currents (I K) were most prominent in these cells. I Kcould be activated at potentials more positive than –40 mV. Half-maximal activation of I Kwas achieved at –13.8 mV and half-maximal inactivation of I Kwas determined at –33.8 mV. The recovery of I Kfrom inactivation was described by a time constant of 7.9 sec. For a tenfold change in extracellular K+ concentration the reversal potential of I Kshifted by 54 mV.Extracellularly applied 10 mm tetraethylammonium chloride reduced I K by about 50%, while 5 mm 4-aminopyridine almost completely abolished I K. Several divalent cations (Ba2+, Cd2+, Co2+, Zn2+) reduced current amplitudes and shifted the activation curve of I Kto more positive values. Charybdotoxin (IC50 = 1.14 nm) and noxiustoxin (IC50=0.89 nm) blocked I Kin a concentration-dependent manner, whereas dendrotoxin and mast cell degranulating peptide had no effect on the current amplitudes.  相似文献   

13.
The influence of cytosolic pH (pHi) in controlling K+-channel activity and its interaction with cytosolic-free Ca2+ concentration ([Ca2+]i) was examined in stomatal guard cells ofVicia faba L. Intact guard cells were impaled with multibarrelled microelectrodes and K+-channel currents were recorded under voltage clamp while pHi or [Ca2+]i was monitored concurrently by fluorescence ratio photometry using the fluorescent dyes 2,7-bis (2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) and Fura-2. In 10 mM external K+ concentration, current through inward-rectifying K+ channels (IK,in) was evoked on stepping the membrane from a holding potential of –100 mV to voltages from –120 to –250 mV. Challenge with 0.3-30 mM Na+-butyrate and Na+-acetate outside imposed acid loads, lowering pHi from a mean resting value of 7.64 ± 0.03 (n = 25) to values from 7.5 to 6.7. The effect on pHi was independent of the weak acid used, and indicated a H+-buffering capacity which rose from 90 mM H+/pH unit near 7.5 to 160 mM H+/pH unit near pHi 7.0. With acid-going pHi, (IK,in) was promoted in scalar fashion, the current increasing in magnitude with the acid load, but without significant effect on the current relaxation kinetics at voltages negative of –150 mV or the voltage-dependence for channel gating. Washout of the weak acid was followed by transient rise in pHi lasting 3–5 min and was accompanied by a reduction in (IK,in) before recovery of the initial resting pHi and current amplitude. The pHi-sensitivity of the current was consistent with a single, titratable site for H+ binding with a pKa near 6.3. Acid pHi loads also affected current through the outward-rectifying K+ channels (IK,out) in a manner antiparallel to (IK,in) The effect on IK, out was also scalar, but showed an apparent pKa of 7.4 and was best accommodated by a cooperative binding of two H+. Parallel measurements showed that Na+-butyrate loads were generally without significant effect on [Ca2+]i, except when pHi was reduced to 7.0 and below. Extreme acid loads evoked reversible increases in [Ca2+]i in roughly half the cells measured, although the effect was generally delayed with respect to the time course of pHi changes and K+-channel responses. The action on [Ca2+]i coincided with a greater variability in (IK,in) stimulation evident at pHi values around 7.0 and below, and with negative displacements in the voltage-dependence of (IK,in) gating. These results distinguish the actions of pHi and [Ca2+]i in modulating (IK,in) they delimit the effect of pHi to changes in current amplitude without influence on the voltage-dependence of channel gating; and they support a role for pHi as a second messenger capable of acting in parallel with, but independent of [Ca2+]i in controlling the K+ channels.Abbreviations BCECF 2,7-bis (2-carboxyethyl)-5(6)-carboxy fluorescein - [Ca2+]i cytosolic free Ca2+ concentration - gK ensemble (steady-state) K+-channel conductance - IK,out, IK,in outward-, inward-rectifying K+ channel (current) - IN current-voltage (relation) - Mes 2-(N-morpholinolethanesulfonic acid - pHi cytosolic pH - V membrane potential  相似文献   

14.
Ion channel expression was studied in THP-1 human monocytic leukemia cells induced to differentiate into macrophage-like cells by exposure to the phorbol ester, phorbol 12-myristate 13-acetate (PMA). Inactivating delayed rectifier K+ currents, I DR, present in almost all undifferentiated THP-1 monocytes, were absent from PMA-differentiated macrophages. Two K+ channels were observed in THP-1 cells only after differentiation into macrophages, an inwardly rectifying K+ channel (I IR) and a Ca2+-activated maxi-K channel (I BK). I IR was a classical inward rectifier, conducting large inward currents negative to E K and very small outward currents. I IR was blocked in a voltage-dependent manner by Cs+, Na+, and Ba2+, block increasing with hyperpolarization. Block by Na+ and Ba2+ was time-dependent, whereas Cs+ block was too fast to resolve. Rb+ was sparingly permeant. In cell-attached patches with high [K+] in the pipette, the single I IR channel conductance was ∼30 pS and no outward current could be detected. I BK channels were observed in cell-attached or inside-out patches and in whole-cell configuration. In cell-attached patches the conductance was ∼200–250 pS and at potentials positive to ∼100 mV a negative slope conductance of the unitary current was observed, suggesting block by intracellular Na+. I BK was activated at large positive potentials in cell-attached patches; in inside-out patches the voltage-activation relationship was shifted to more negative potentials by increased [Ca2+]. Macroscopic I BK was blocked by external TEA+ with half block at 0.35 mm. THP-1 cells were found to contain mRNA for Kv1.3 and IRK1. Levels of mRNA coding for these K+ channels were studied by competitive PCR (polymerase chain reaction), and were found to change upon differentiation in the same direction as did channel expression: IRK1 mRNA increased at least 5-fold, and Kv1.3 mRNA decreased on average 7-fold. Possible functional correlates of the changes in ion channel expression during differentiation of THP-1 cells are discussed. Received: 19 September 1995/Revised: 14 March 1996  相似文献   

15.
16.
To explore the formation, morphological characteristics, cell composition, and differentiation potential of cardiomyocyte annulation (cardio-annulation) during in vitro culture of cardiac cells. Cardiac cells were isolated and cultured. A live-cell imaging system was used to observe cardio-annulation. Cardiac troponin-T (cTnT) and vimentin were labeled with double immunofluorescence staining, and coexpressions of cTnT and connexin43 (Cx43), cTnT and nanog, c-kit and nanog, and c-kit and stem cell antigen (sca-1) were detected. The location of various types of cells within the cardio-annulation structure was observed. Adipogenic- and osteogenic-inducing fluids were used separately for in situ induction to detect the multidirectional differentiation potential of cells during the annulation process. After 3 to 6 days, cardiac cells migrated and formed an open or closed annulus with a diameter of 800 to 3500 μm. The annulus wall comprised the medial, middle, and lateral regions. The cells in the medial region were small, abundant, and laminated, while those in the middle region were larger with fewer layers, and those in the lateral region were less abundant, and loosely arranged in a single layer. Cardiomyocytes were distributed mainly on the surface of the medial region; nanog+, c-kit+, and sca-1+ cells were located mainly at the bottom of the annulus wall and fibroblasts were located mainly between these layers. The annulus cavity contained a large number of small, round cells, and telocytes. Cx43 was expressed in all cell types, and nanog, c-kit, and sca-1 were coexpressed in the cardio-annulation cells, which possess adipogenic and osteogenic differentiation potential. Cardio-annulation was discovered during an in vitro culture of cardiac cells. The structure contains cardiomyocytes, fibroblasts, telocytes, and abundant stem cells. These results provide insight into the relationship among cardiac cells in vitro.  相似文献   

17.
We aimed to investigate the role of activin receptor-like kinase (ALK7) in regulating cardiac electrophysiology. Here, we showed that Alk7-/- mice exhibited prolonged QT intervals in telemetry ECG recordings. Furthermore, Langendorff-perfused Alk7-/- hearts had significantly longer action potential duration (APD) and greater incidence of ventricular arrhythmia (AV) induced by burst pacing. Using whole-cell patch clamp, we found that the densities of repolarizing K+ currents Ito and IK1 were profoundly reduced in Alk7-/- ventricular cardiomyocytes. Mechanistically, the expression of Kv4.2 (a major subunit of Ito carrying channel) and KCHIP2 (a key accessory subunit of Ito carrying channel), was markedly decreased in Alk7-/- hearts. These findings suggest that endogenous expression of ALK7 is necessary to maintain repolarizing K+ currents in ventricular cardiomyocytes, and finally prevent action potential prolongation and ventricular arrhythmia.  相似文献   

18.
(+)-MK801, a noncompetitive NMDA receptor antagonist, was reported to exhibit anticonvulsive and neuroprotective activities during the postischemic period. Intravenous administration of (+)-MK801 produced tachycardia in rats, but bradycardia in pigs. We examined the mechanical and electrophysiological effects of (+)-MK801 on rat cardiac tissues. (+)-MK801 dose-dependently increased (3–100 µM) twitch tension in rat atria and ventricular strips. The spontaneous beating rate in rat right atria, however, was dose-dependently decreased by (+)-MK801. The inotropic effect of (+)-MK801 was affected neither by 1-antagonist (1 µM prazosin) nor by 1-adrenoceptor antagonist (3 µM atenolol), but significantly by a transient outward K+ channel blocker (3 mM 4-aminopyridine). (+)-MK801 did not cause any significant change of intracellular cAMP content. Electrophysiological study in rat ventricular cells revealed that (+)-MK801 concentration-dependently prolonged the action potential duration with a concomitant decrease in the maximum rate of the action potential upstroke (Vmax) and an increase in the recovery time constant of Vmax. Voltage clamp study showed that (+)-MK801 (3 µM) reduced inward Na+ current (INa), along with a slowing of its recovery from inactivation and a slight negative shift of its voltage-dependent steady-state inactivation curves. At a much higher concentration (30 µM), (+)-MK801 slightly reduced the amplitude of L-type calcium inward current (ICa), although the voltage dependence of its steady-state inactivation was unaffected. For the potassium currents in rat ventricular cells, 3 µM of (+)-MK801 reduced the peak transient outward current (Ito), steady-state outward current (Iss) and inward current through K1 channels. The inhibition of Ito was associated with a prominent negative shift in the voltage dependence of its steady-state inactivation curve. The outward current through K1 channels was unaffected. These results indicate that (+)-MK801 may be a strong INa and Ito blocker with some ICa blocking activity. The inhibition of Ito and other K+ efflux would prolong action potential duration, produce positive inotropic action and contribute to the negative chronotropic effect of (+)-MK801.  相似文献   

19.
Cardiac fibroblasts are crucial in pathophysiology of the myocardium whereby their aberrant proliferation has significant impact on cardiac function. Hydrogen sulphide (H2S) is a gaseous modulator of potassium channels on cardiomyocytes and has been reported to attenuate cardiac fibrosis. Yet, the mechanism of H2S in modulating proliferation of cardiac fibroblasts remains poorly understood. We hypothesized that H2S inhibits proliferative response of atrial fibroblasts through modulation of potassium channels. Biophysical property of potassium channels in human atrial fibroblasts was examined by whole‐cell patch clamp technique and their cellular proliferation in response to H2S was assessed by BrdU assay. Large conductance Ca2+‐activated K+ current (BKCa), transient outward K+ current (Ito) and inwardly rectifying K+ current (IKir) were found in human atrial fibroblasts. Current density of BKCa (IC50 = 69.4 μM; n = 6), Ito (IC50 = 55.1 μM; n = 6) and IKir (IC50 = 78.9 μM; n = 6) was significantly decreased (P < 0.05) by acute exposure to NaHS (a H2S donor) in atrial fibroblasts. Furthermore, NaHS (100–500 μM) inhibited fibroblast proliferation induced by transforming growth factor‐β1 (TGF‐β1; 1 ng/ml), Ang II (100 nM) or 20% FBS. Pre‐conditioning of fibroblasts with NaHS decreased basal expression of Kv4.3 (encode Ito), but not KCa1.1 (encode BKCa) and Kir2.1 (encode IKir). Furthermore, H2S significantly attenuated TGF‐β1–stimulated Kv4.3 and α‐smooth muscle actin expression, which coincided with its inhibition of TGF‐β–induced myofibroblast transformation. Our results show that H2S attenuates atrial fibroblast proliferation via suppression of K+ channel activity and moderates their differentiation towards myofibroblasts.  相似文献   

20.
AimsDiabetes mellitus is associated with changes of α1-adrenoceptor (α1-AR) on heart electrical function and expression. In this study, we investigated the ionic basis underlying abnormal α1-AR mediated QT prolongation in the diabetic rat hearts.Main methodsElectrophysiological and biochemical techniques were used in Streptozotocin (STZ)-induced diabetic and control rat hearts.Key findingsIn both control and diabetic rats, the α1-AR agonist, phenylephrine (PE, 10–100 µM) prolonged the rate-corrected QT intervals (QTc) and action potential durations at 30% (APD30) and 90% (APD90) repolarization levels with the increased QTc and APD90 significantly greater in diabetic rats. PE significantly decreased the transient outward K+ current (Ito) and the steady-state K+ current (Iss) in both control and diabetic rats but had no effects on the delayed rectifier K+ current (Ik). However, PE induced a greater reduction mainly in the Iss, but not Ito, in diabetic rats. Furthermore, using RT–PCR and Western blot analyses, we found that α1A-ARs were over-expressed in the left ventricular tissues of the diabetic rat hearts at both the mRNA and the protein levels.SignificanceThese data suggested that in diabetic hearts, a greater sensitivity of the α1A-AR mediated the larger suppression of Iss and resulted in a more prolonged APD90 and QTc. Thus, higher α1A-AR expression levels in diabetic heart may underlie this type of diabetic cardiomyopathy and suggests that α1A-AR may serve as a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号