首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell–cell signaling regulated by retinoic acid (RA), Wnt/β-catenin, and fibroblast growth factor (FGF) is important during body axis extension, and interactions between these pathways have been suggested. At early somite stages, Wnt/β-catenin and FGF signaling domains exist both anterior and posterior to the developing trunk, whereas RA signaling occurs in between in the trunk under the control of the RA-synthesizing enzyme retinaldehyde dehydrogenase-2 (Raldh2). Previous studies demonstrated that vitamin A deficient quail embryos and Raldh2−/− mouse embryos lacking RA synthesis exhibit ectopic expression of Fgf8 and Wnt8a in the developing trunk. Here, we demonstrate that Raldh2−/− mouse embryos display an expansion of FGF signaling into the trunk monitored by Sprouty2 and Pea3 expression, and an expansion of Wnt/β-catenin signaling detected by expression of Axin2, Tbx6, Cdx2, and Cdx4. Following loss of RA signaling, the caudal expression domains of Fgf8, Wnt8a, and Wnt3a expand anteriorly into the trunk, but no change is observed in caudal expression of Fgf4 or Fgf17 plus caudal expression of Fgf18 and Cdx1 is reduced. These findings suggest that RA repression of Fgf8, Wnt8a, and Wnt3a in the developing trunk functions to down-regulate FGF signaling and Wnt/β-catenin signaling as the body axis extends.  相似文献   

2.
Polakis P 《The EMBO journal》2012,31(12):2737-2746
Aberrant regulation of the Wnt signalling pathway has emerged as a prevalent theme in cancer biology. This chapter summarizes the research that provides a proof of concept for inhibiting Wnt signalling in cancer, the potential means by which this could be achieved, and some recent advances towards this goal. A brief discussion of molecular diagnostics and possible safety concerns is also provided.  相似文献   

3.
Wnt蛋白是一组调控胚胎形成期间细胞间信号传导的高度保守的分泌信号分子.在过去的几年里,由Wnt蛋白触发的不同信号通路已经得到了详尽的研究.Wnt基因与Wnt信号通路组成分子的突变可引起发育缺陷,异常的Wnt信号传导可导致人类疾病包括肿瘤的发生.许多证据都表明,Wnt信号通路的失调与乳腺癌的发生发展密切相关.micro...  相似文献   

4.
Both Wnt signaling and prostaglandin E2 (PGE2) play pivotal roles in bone development, remodeling, osteoporosis and prostate cancer (PCa) bone metastases. We investigated the effects of PGE2 on Wnt signaling in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells. We demonstrate that low dose PGE2 (0.1 μM) promotes Wnt signaling while higher doses of PGE2 (1.0-10 μM) inhibit these same parameters in osteoblast-lineage cells. The differential effects of low vs high-dose PGE2 on pre-osteoblasts may be attributed to dose-dependent modulation of prostaglandin receptor (EP) subtype expression; with lower doses increasing the expression the cAMP-stimulatory EP4 receptor subtype and higher doses increasing the expression of the cAMP-inhibitory EP3 receptor subtype. Moreover, we demonstrate that high expression levels of COX-2 and PGE2 promote the secretion of Wnt inhibitors from prostate cancer cells. These data demonstrate that there are dose-dependent effects of PGE2 on Wnt activation in osteoblast-lineage cells and Wnt-inhibitor expression in PCa cells which may have clinical implications in the management.  相似文献   

5.
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1−/−; Spry2−/− embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1−/−; Spry2−/− embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1−/−; Spry2−/− embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.  相似文献   

6.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans.  相似文献   

7.
We investigated the intestinal microflora of coastal fish including Takifugu niphobles using both culture techniques and library cloning. As a result, the numbers of bacteria appeared on agar media were 1.0 × 104 to 1.4 × 109 CFU/g (colony forming units/gram), whereas those of total bacteria stained with 4′,6-diamidino-2-phenylindole were 4.7 × 1010 to 1.9 × 1011 cells/gram, irrespective of different fish species. In addition, the culture technique showed that the intestinal microflora in all specimens was mainly composed of the genus Vibrio. In contrast, the direct count method showed that spirochaetes with length of 2.5-4.5 μm were present in the intestinal contents of T. niphobles at high densities, whereas such bacteria could not be detected in those of other fish species. Library cloning yielded the sequences of 16S rRNA genes that were divided into seven taxonomic categories of bacteria including Actinobacteria, Bacilli, Clostridia, Gammaproteobacteria, Mollicutes, Spirochaetes and an unclassified bacterial group. These results demonstrate that the molecular diversity of the intestinal bacteria in T. niphobles based on the clone library method reflects the direct observation by fluorescence microscopy to some extent.  相似文献   

8.
The importance of SULF1 in modulating the activities of multiple signalling molecules is now well established. Several studies, however, reported little or no effect of Sulf1 null mutations, questioning the relevance of this gene to in vivo development. The failure of SULF1 deletion to influence development may be predicted if one considers the involvement of a naturally occurring SULF1 antagonist, generated by alternative splicing of the same gene. We demonstrate that while the previously described SULF1 (SULF1A) enhances Wnt signalling, the novel shorter isoform (SULF1B) inhibits Wnt signalling. Our studies show developmental stage specific changes in the proportions of SULF1A and SULF1B isoforms at both the mRNA and protein levels in many developing tissues, with particularly pronounced changes in developing and adult blood vessels. Unlike SULF1A, SULF1B promotes angiogenesis and is highly expressed in endothelial cells during early blood vessel development while SULF1A predominates in mature endothelial cells. We propose that the balance of two naturally occurring SULF1 variants, with opposing functional activities, may regulate the overall net activities of multiple secreted factors and the associated signalling cascades essential for normal development and maintenance of most tissues.  相似文献   

9.
Wnt signaling pathways are essential in various developmental processes including differentiation, proliferation, cell migration, and cell polarity. Wnt proteins execute their multiple functions by activating distinct intracellular signaling cascades, although the mechanisms underlying this activation are not fully understood. We identified a novel Daple-like protein in Xenopus and named it xDal (Xenopus Daple-like). As with Daple, xDal contains several leucine zipper-like regions (LZLs) and a putative PDZ domain-binding motif, and can interact directly with the dishevelled protein. In contrast to mDaple, injection of xDal mRNA into the dorso-vegetal blastomere does not induce ventralization and acted synergistically with xdsh in secondary axis induction. XDal also induced expression of siamois and xnr-3, suggesting that XDal functions as a positive regulator of the Wnt/beta-catenin pathway. Injection of xDal mRNA into the dorso-animal blastomere, however, induced gastrulation-defective phenotypes in a dose-dependent manner. In addition, xDal inhibited activin-induced elongation of animal caps and enhanced c-jun phosphorylation. Based on these findings, xDal is also thought to function in the Wnt/JNK pathway. Moreover, functional domain analysis with several deletion mutants indicated that xDal requires both a putative PDZ domain-binding motif and at least one LZL for its activity. These findings with xDal will provide new information on the Wnt signaling pathways.  相似文献   

10.
11.
念珠菌作为共生菌定植于机体黏膜表面,一般情况下并不引起感染,但当机体出现免疫力下降或微生态失衡等状况时,可引发口咽念珠菌病、外阴阴道念珠菌病等黏膜感染。对于念珠菌黏膜感染的治疗,虽然抗菌药物是不可或缺的因素,但宿主自身的免疫力,尤其是黏膜上皮细胞作为抵御念珠菌感染的第一道防线,发挥着重要作用。本文将念珠菌—上皮细胞相互作用研究进展作一综述。  相似文献   

12.
Wnt signaling plays important roles in development and disease. The X-chromosomal Porcupine homolog gene (Porcn) encodes an evolutionary conserved member of the membrane bound O-acyl transferase (MBOAT) superfamily that has been shown to be required for the palmitoylation and secretion of Wnt3a, a mechanism that has been suggested to be conserved for all mammalian Wnt ligands. PORCN mutations in humans cause Focal Dermal Hypoplasia (FDH), a disorder causing developmental defects in heterozygous females and embryonic lethality in hemizygous males. In this study, Porcn mutant mouse embryonic stem (ES) cells were used to analyze the role of Porcn in mammalian embryonic development. In vitro, we show an exclusive requirement for Porcn in Wnt secreting cells and further, that any of the four Porcn isoforms is sufficient to allow for the secretion of functional Wnt3a. Embryos generated by aggregation of Porcn mutant ES cells with wildtype embryos fail to complete gastrulation in vivo, but remain in an epiblast-like state, similar to Wnt3 and Gpr177/Wls mutants. Consistent with this phenotype, in vitro differentiated mutant ES cells fail to generate endoderm and mesoderm derivatives. Taken together, these data confirm the importance of Porcn for Wnt secretion and gastrulation and suggest that disruption of early development underlies the male lethality of human PORCN mutants.  相似文献   

13.
14.
15.
Lee JM  Kim JY  Cho KW  Lee MJ  Cho SW  Kwak S  Cai J  Jung HS 《Developmental biology》2008,314(2):341-350
Various cellular and molecular events underlie the elevation and fusion of the developing palate that occurs during embryonic development. This includes convergent extension, where the medial edge epithelium is intercalated into the midline epithelial seam. We examined the expression patterns of Wnt11 and Fgfr1b - which are believed to be key factors in convergent extension - in mouse palate development. Wnt-11 overexpression and beads soaked in SU5402 (an Fgfr1 inhibitor) were employed in in vitro organ cultures. The results suggested that interactions between Wnt11 and Fgfr1b are important in modulating cellular events such as cell proliferation for growth and apoptosis for fusion. Moreover, the Wnt11 siRNA results showed that Wnt11-induced apoptosis was necessary for palatal fusion. In summary, Fgfr1b induces cell proliferation in the developing palate mesenchyme so that the palate grows and contacts each palatal shelf, with negative feedback of Fgfs triggered by excessive cell proliferation then inhibiting the expression of Fgfr1b and activating the expression of Wnt11 to fuse each palate by activating apoptosis.  相似文献   

16.
17.
Thermotropic properties of purified cytochrome c1 and cytochrome c have been studied by differential scanning calorimetry under various conditions. Both cytochromes exhibit a single endothermodenaturation peak in the differential scanning calorimetric thermogram. Thermodenaturation temperatures are ionic strength, pH, and redox state dependent. The ferrocytochromes are more stable toward thermodenaturation than the ferricytochromes. The enthalpy changes of thermodenaturation of ferro- and ferricytochrome c1 are markedly dependent on the ionic strength of the solution. The effect of the ionic strength of solution on the enthalpy change of thermodenaturation of cytochrome c is rather insignificant. The formation of a complex between cytochromes c and c1 at lower ionic strength causes a significant destabilization of the former and a slight stabilization of the latter. The destabilization of cytochrome c upon mixing with cytochrome c1 was also observed at high ionic strength, under which conditions no stable complex was detected by physical separation. This suggests formation of a transient complex between these two cytochromes. When cytochrome c was complexed with phospholipids, no change in the thermodenaturation temperature was observed, but a great increase in the enthalpy change of thermodenaturation resulted.  相似文献   

18.
Anterior-posterior neural patterning of Xenopus embryo is determined during gastrulation and then followed by differentiation of neural structures including brain and eye. The cement gland is a mucus-secreting neural organ located in the anterior end of the neural plate. This study analyzed expression patterns of Xenopus galectin-VIa (Xgalectin-VIa) by whole-mount in situ hybridization, and found highly restricted expression of this gene in the cement gland region. These patterns were similar to those of XAG-1 and XCG, known cement gland-specific genes. In addition, Xgalectin-VIa was expressed in the dorsal edge of eye vesicles, the otic vesicle, and in part of the hatching gland at the tadpole stage. Although the spatial expression pattern was similar, the temporal expression of Xgalectin-VIa differed from that of XAG-1 and XCG. RT-PCR analysis showed only weak Xgalectin-VIa expression in early neurula embryos, whereas both XAG-1 and CGS were strongly expressed at that stage. We also showed that Xgalectin-VIa expression is repressed by enhancement of Wnt signaling and increased by its inhibition. Furthermore, Xgalectin-VIa expression was activated by neural-gene inducer Xotx2, as is the case for XAG-1 and CGS. Together, these results indicated that Xgalectin-VIa possesses different features from other cement gland genes and is a novel and useful marker of the cement gland in developing embryos.  相似文献   

19.
Morphogenesis during eye development requires retinoic acid (RA) receptors plus RA-synthesizing enzymes, and loss of RA signaling leads to ocular disorders associated with loss of Pitx2 expression in perioptic mesenchyme. Several Wnt signaling components are expressed in ocular tissues during eye development including Dkk2, encoding an inhibitor of Wnt/β-catenin signaling, which was previously shown to be induced by Pitx2 in the perioptic mesenchyme. Here, we investigated potential cross-talk between RA and Wnt signaling during ocular development. Genetic studies using Raldh1/Raldh3 double null mice deficient for ocular RA synthesis demonstrated that Pitx2 and Dkk2 were both down-regulated in perioptic mesenchyme. Chromatin immunoprecipitation and gel mobility shift studies demonstrated the existence of a DR5 RA response element upstream of Pitx2 that binds all three RA receptors in embryonic eye. Axin2, an endogenous readout of Wnt/β-catenin signaling, was up-regulated in cornea and perioptic mesenchyme of RA deficient embryos. Also, expression of Wnt5a was expanded in perioptic mesenchyme of RA deficient eyes. Our findings demonstrate excessive activation of Wnt signaling in the perioptic mesenchyme of RA deficient mice which may be responsible for abnormal development leading to defective optic cup, cornea, and eyelid morphogenesis.  相似文献   

20.
Calpains are a family of calcium-dependent intracellular cysteine proteases that regulate several physiological processes by limited cleavage of different substrates. The role of Calpain2 in embryogenesis is not clear with conflicting evidence from a number of mouse knockouts. Here we report the temporal and spatial expression of Calpain2 in Xenopus laevis embryos and address its role in Xenopus development. We show that Calpain2 is expressed maternally with elevated expression in neural tissues and that Calpain2 activity is spatially and temporally regulated. Using a Calpain inhibitor, a dominant negative and a morpholino oligonoucleotide we demonstrate that impaired Calpain2 activity results in defective convergent extension both in mesodermal and neural tissues. Specifically, Calpain2 downregulation results in loss of tissue polarity and blockage of mediolateral intercalation in Keller explants without affecting adherens junction turnover. We further show that Calpain2 is activated in response to Wnt5a and that the inhibitory effect of Wnt5a expression on animal cap elongation can be rescued by blocking Calpain2 function. This suggests that Calpain2 activity needs to be tightly regulated during convergent extension. Finally we show that expression of Xdd1 blocks the membrane translocation of Calpain2 suggesting that Calpain2 activation is downstream of Dishevelled. Overall our data show that Calpain2 activation through the Wnt/Ca2+ pathway and Dishevelled can modulate convergent extension movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号