首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glioblastoma multiforme (GBM) is considered to be the most common and often deadly disorder which affects the brain. It is caused by the over expression of proteins such as ephrin type-A receptor 2 (EphA2), epidermal growth factor receptor (EGFR) and EGFRvIII. These 3 proteins are considered to be the potential therapeutic targets for GBM. Among these, EphA2 is reported to be over-expressed in ˜90% of GBM. Herein we selected 35 compounds from marine actinomycetes, 5 in vitro and in vivo studied drug candidates and 4 commercially available drugs for GBM which were identified from literature and analysed by using comparative docking studies. Based on the glide scores and other in silico parameters available in Schrödinger, two selected marine actinomycetes compounds which include Tetracenomycin D and Chartreusin exhibited better binding energy among all the compounds studied in comparative docking. In this study we have demonstrated the inhibition of the 3 selected targets by the two bioactive compounds from marine actinomycetes through in-silico docking studies. Furthermore molecular dynamics simulation were also been performed to check the stability and the amino acids interacted with the 3 molecular targets (EphA2 receptor, EGFR, EGFRvIII) for GBM. Our results suggest that Tetracinomycin D and Chartreusin are the novel and potential inhibitor for the treatment of GBM.  相似文献   

2.
Glioblastoma multiforme (GBM) or grade IV astrocytoma is the most common and lethal adult malignant brain tumor. The present study was conducted to investigate the alterations in the serum proteome in GBM patients compared to healthy controls. Comparative proteomic analysis was performed employing classical 2DE and 2D‐DIGE combined with MALDI TOF/TOF MS and results were further validated through Western blotting and immunoturbidimetric assay. Comparison of the serum proteome of GBM and healthy subjects revealed 55 differentially expressed and statistically significant (p <0.05) protein spots. Among the identified proteins, haptoglobin, plasminogen precursor, apolipoprotein A‐1 and M, and transthyretin are very significant due to their functional consequences in glioma tumor growth and migration, and could further be studied as glioma biomarkers and grade‐specific protein signatures. Analysis of the lipoprotein pattern indicated elevated serum levels of cholesterol, triacylglycerol, and low‐density lipoproteins in GBM patients. Functional pathway analysis was performed using multiple software including ingenuity pathway analysis (IPA), protein analysis through evolutionary relationships (PANTHER), database for annotation, visualization and integrated discovery (DAVID), and GeneSpring to investigate the biological context of the identified proteins, which revealed the association of candidate proteins in a few essential physiological pathways such as intrinsic prothrombin activation pathway, plasminogen activating cascade, coagulation system, glioma invasiveness signaling, and PI3K signaling in B lymphocytes. A subset of the differentially expressed proteins was applied to build statistical sample class prediction models for discrimination of GBM patients and healthy controls employing partial least squares discriminant analysis (PLS‐DA) and other machine learning methods such as support vector machine (SVM), Decision Tree and Naïve Bayes, and excellent discrimination between GBM and control groups was accomplished.  相似文献   

3.
4.
The survival of cancer patients suffering from glioblastoma multiforme is limited to just a few months even after treatment with the most advanced techniques. The indefinable borders of glioblastoma cell infiltration into the surrounding healthy tissue prevent complete surgical removal. In addition, genetic mutations, epigenetic modifications and microenvironmental heterogeneity cause resistance to radio- and chemotherapy altogether resulting in a hardly to overcome therapeutic scenario. Therefore, the development of efficient therapeutic strategies to combat these tumors requires a better knowledge of genetic and proteomic alterations as well as the infiltrative behavior of glioblastoma cells and how this can be targeted. Among many cell surface receptors, members of the integrin family are known to regulate glioblastoma cell invasion in concert with extracellular matrix degrading proteases. While preclinical and early clinical trials suggested specific integrin targeting as a promising therapeutic approach, clinical trials failed to deliver improved cure rates up to now. Little is known about glioblastoma cell motility, but switches in invasion modes and adaption to specific microenvironmental cues as a consequence of treatment may maintain tumor cell resistance to therapy. Thus, understanding the molecular basis of integrin and protease function for glioblastoma cell invasion in the context of radiochemotherapy is a pressing issue and may be beneficial for the design of efficient therapeutic approaches. This review article summarizes the latest findings on integrins and extracellular matrix in glioblastoma and adds some perspective thoughts on how this knowledge might be exploited for optimized multimodal therapy approaches.  相似文献   

5.
Glioblastoma multiforme (GBM) is the most common primary central nervous system malignant tumor. It responds poorly to standard therapies, such as surgical resection, radiation therapy and chemotherapy. Many chemotherapeutic drugs are focused on apoptosis induction and radiation sensitivity. Inhibition of histone acetylation via histone deacetylase inhibitor (HDACI) is one such strategy. Statins (or 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) are classical drugs used to lower cholesterol but also inhibitors of histone deacetylation activity. This study analyzes the combinatory effects of valproic acid (VPA) and fluvastatin on apoptosis induction in GBM8401 cells. The results show that they act synergistically in inducing γ-H2AX and apoptosis accompanied by higher acetylated histones H3 and H4. Downregulation of p53 occurred by VPA alone and fluvastatin alone, but not at their combined application; upregulation of p21 at the protein level was induced by each of the drugs alone and no further increase occurred at combined application. The drug BEZ235 inhibited phosphorylation of Akt and attenuated the level of γ-H2AX as well as cleaved PARP (cPARP) induced at combined application of VPA and fluvastatin. Induction of apoptosis within a 48 h incubation period was massive when measured as the subG1 peak (97%) and was detected after a 24 h incubation at low level when assayed with PE Annexin V. Synergistic apoptosis induction was demonstrated also after 24 h incubation by the appearance of cPARP. Partial silencing of p21 reduced cPARP as well as the percentage of apoptotic cells in the subG1 peak. However, partial silencing of p53 had no effect on apoptosis. Such findings offer a better understanding of the mechanism of action of HDACIs in combination with statins that may guide the development of a new combinatory reposition for the treatment of GBM.  相似文献   

6.
Previous studies from this laboratory indicated that microRNA-21 (miR-21) contributes to chemoresistance of glioblastoma multiforme (GBM) cells to teniposide, a type II topoisomerase inhibitor. We also showed that LRRFIP1 is a target of miR-21. In this study, we found that higher baseline LRRFIP1 expression in human GBM tissue (n = 60) is associated with better prognosis upon later treatment with teniposide. Experiments in cultured U373MG cells showed enhanced toxicity of teniposide against U373MG cells transfected with a vector that resulted in LRRFIP1 overexpression (vs. cells transfected with control vector). Experiments in nude mice demonstrated better response of LRRFIP1 overexpressing xenografts to teniposide. These findings indicate that high baseline LRRFIP1 expression in GBM is associated with better response to teniposide, and encourage exploring LRRFIP1 as a target for GBM treatment.  相似文献   

7.
Glioblastoma multiforme (GBM) is the most aggressive of brain tumors and is extremely insensitive to anticancer drugs. Studies have attributed the ABC transporter Mrp1 (ABCC1, multiple-drug resistance protein 1) with conferring chemoresistance in this tumor by extrusion of a wide spectrum of anticancer drugs. Therefore it is crucial to search for and investigate inhibitors of Mrp1 activity in GBM cells, particularly those that could be safe as chemosensitizers to anticancer drugs in clinical studies. We find that in primary cultured or T98G GBM cells exposed to therapeutic plasma concentrations of FK506 (tacrolimus), the expression of Mrp1 was decreased in a dose-dependent manner. The activity of this transporter, measured by CFDA fluorescent substrate extrusion, decreased significantly in primary cultured GBM cells on exposure to FK506 at concentrations of 15 ng/ml. When GBM cells were exposed to anticancer drugs vincristine, etoposide or taxol, cell viability was not affected. However when the anticancer drugs were assayed in combination with FK506, cell viability was significantly decreased by as much as 50% in GBM primary culture. We conclude that FK506 could be a valuable tool for chemosensitization of GBM cells, offering a possible improvement to the current poor therapy available for high-grade human gliomas.  相似文献   

8.
Oncogenic EGFRvIII is a naturally occurring oncoprotein and is expressed in about 40-50% of human glioblastomas, particularly those that arise de novo. To understand the molecular mechanisms by which this oncoprotein alters transforming phenotypes, and since our previous work indicated that SHP-2 protein tyrosine phosphatase activity modulated EGFRvIII activation and downstream signaling, we examined whether SHP-2 plays a role in EGFRvIII-induced oncogenesis by using both PTEN-deficient U87MG.EGFRvIII and PTEN-intact LN229.EGFRvIII cells. Inhibition of SHP-2 expression by Shp-2 siRNA inhibited cell growth, transformation and altered morphology of these EGFRvIII transformed GBM cells. Ectopic expression of a PTPase-inactive form of SHP-2, SHP-2 C459S, but not its wild-type SHP-2 or either of two SH2 domain mutants, abrogated transformation of EGFRvIII-expressing glioblastomas in soft agar and in nude mice. SHP-2 C459S cells grew slower and exhibited a more flattened morphology with more organized actin stress fibers under both full growth and low serum conditions. Furthermore, shp-2+/− and −/− mouse embryonic fibroblasts (MEFs) could not be transformed by EGFRvIII while shp-2+/+ MEFs displayed a fully transformed phenotype upon introduction of EGFRvIII, again indicating a requirement for functional SHP-2 in EGFRvIII transformation. Moreover, the SHP-2 PTPase activity inhibitor NSC-87877 inhibited endogenous SHP-2 activity, Erk phosphorylation and transformation in both GBM cell lines. EGFRvIII expression recruited SHP-2 to the receptor complex to transduce signals and also increased SHP-2 phosphorylation at Tyr542. Inhibition of EGFRvIII-induced cell growth and transformation by SHP-2 C459S or shp-2 siRNA was mediated by its ability to block cell cycle progression at different phases in these GBM cells. These data indicate that differential activation of SHP-2 phosphorylation at Tyr542 in these two GBM cell lines likely results in increased different PTPase activity and distinct mechanisms of cell cycle progression and SHP-2, in particular its PTPase activity, plays a critical role in EGFRvIII-mediated transformation.  相似文献   

9.
Background and aim: the study aimed to determine whether hypofractionated radiotherapy (HFRT) with simultaneous and adjuvant temozolomide (TMZ) was feasible and could provide adequate disease control in primary GBM patients with poor prognostic factors including large tumor size, poor performance status, unresectable or multifocal lesions, poor imaging and inflammatory indices. Patients and methods: A total of 93 patients with glioblastoma multiforme were collected and distributed randomly as 1:1.7 of cases to controls; cases or arm (I) received HFRT with 45 Gy in 15 fractions over 3 weeks concurrently with TMZ. Controls or arm (II) received standard conventional fractionation radiotherapy of 60 Gy in 30 fractions over 6 weeks concurrently with TMZ. Results: 35 patients were recruited in arm I while 58 patients in arm II with significant difference in site of GBM, pattern of enhancement, type of surgery, and neutrophil to lymphocyte ratio, while no significant differences in tumor size, focality, responses, progression free survival, and overall survival (OS), only the type of surgery was an independent predictor for OS, no significant difference in the type and degree of toxicity between both arms. Conclusion: Our results showed that HFRT with concurrent TMZ is a feasible therapeutic approach in patients with GBM, especially those with poor prognostic factors, assuring high treatment compliance and low toxicity rates. Dose escalation and reduction in overall treatment time are clear advantages of HFRT, while at least the same survival rates as conventional fractionated RT are maintained.  相似文献   

10.
Among several types of brain cancers, glioblastoma multiforme (GBM) is a terminal and aggressive disease with a median survival of 15 months despite the most intensive surgery and chemotherapy. Preclinical models that accurately reproduce the tumor microenvironment are vital for developing new therapeutic alternatives. Understanding the complicated interactions between cells and their surroundings is essential to comprehend the tumor's microenvironment, however the monolayer cell culture approach falls short. Numerous approaches are used to develop GBM cells into tumor spheroids, while scaffold-based spheroids provides the opportunity to investigate the synergies between cells as well as cells and the matrix. This review summarizes the development of various scaffold-based GBM spheroid models and the prospective for their use as drug testing systems.  相似文献   

11.
Long noncoding RNA (lncRNA) AGAP2 antisense RNA 1 (AGAP2-AS1) has been suggested to function as an oncogenic lncRNA in lung cancer, breast cancer, and anaplastic glioma. However, the expression pattern and molecular mechanism of AGAP2-AS1 in glioblastoma multiforme (GBM) remains unknown. The purpose of this study is to present more evidence about the clinical and biological function of AGAP2-AS1 in GBM. In our results, we found AGAP2-AS1 expression was increased in GBM compared with adjacent normal brain tissues or low-grade glioma tissues, and there was no significantly different between low-grade glioma tissues and normal tissues. Kaplan-Meier survival analysis indicated patients with GBM having high-expression of AGAP2-AS1 had shorter overall survival time than those with low expression of AGAP2-AS1. The loss-of-function studies showed that downregulation of AGAP2-AS1 depressed cell proliferation, migration, and invasion, and promoted cell apoptosis in GBM. In summary, AGAP2-AS1 is a prognostic biomarker for patients with GBM, and functions as an oncogenic lncRNA to modulate GBM cell proliferation, apoptosis, migration, and invasion, which suggests that AGAP2-AS1 is potential therapeutic target for GBM.  相似文献   

12.
A recombinant plasmid containing a full length human epidermal growth factor receptor (EGFR) cDNA sequence in antisense orientation was transferred into cells of a human liver carcinoma cell line BEL-7404. Compared with the control cell clone JX-0 transferred with the vector plasmid and the parent BEL-7404 cells, the antisense EGFR transferred cell clone JX-1 showed a decreased EGFR gene expression and reduced significantly the growth potential either in anchorage-dependent or anchorage-independent growth. Furthermore, JX-1 cells appeared to be distinctly dependent on serum concentration for monolayer growth. The results suggested that antisense EGFR could partly block the EGFR gene expression and reverse the malignant growth properties of human liver carcinoma cells in vitro.  相似文献   

13.
14.
The concept of a stem cell subpopulation as understood from normal epithelial tissue or bone marrow function has been extended to our understanding of cancer tissue and is now the target of treatment efforts specifically directed to this subpopulation. In glioblastoma, as well as in other cancers, increased expression of aldehyde dehydrogenase (ALDH) has been found localized within a minority sub-population of tumor cells which demonstrate stem cell properties. A separate body of research associated increased expression of heat-shock protein-90 (HSP90) with stem cell attributes. We present here results from our initial immunohistochemistry study of human glioblastoma biopsy tissue where both ALDH and HSP90 tended to be co-expressed in high amounts in the same minority of cells. Since 12% of all cells in the six biopsies studied were ALDH positive and 17% were HSP90 positive, by chance alone 2% would have been expected to be positive for both. In fact 7% of all cells simultaneously expressed both markers-a significant difference (p = 0.037). That two previously identified proteins associated with stem cell attributes tend to be co-expressed in the same individual glioblastoma cells might have clinical utility. Disulfiram, used to treat alcoholism for half-a century now, is a potent ALDH inhibitor and the old anti-viral drug ritonavir inhibits HSP90. These should be explored for the potential to retard aspects of glioblastoma stem cells' function subserved by ALDH and HSP90.  相似文献   

15.
16.
Poor prognosis and low survival are commonly seen in patients with glioblastoma multiforme (GBM). Due to the specific nature of solid tumors such as GBM, delivery of therapeutic agents to the tumor sites is difficult. So, one of the major challenges in the treatment of these tumors is a selection of appropriate method for drug delivery. Mesenchymal stem cells (MSCs) have a unique characteristic in migration toward the tumor tissue. In this regard, the present study examined the antitumor effects of manipulating human placenta-derived mesenchymal stem cells (PDMSCs) with NK4 expression (PDMSC-NK4) on GBM cells. After separation and characterization of PDMSCs, these cells were transduced with NK4 which was known as the antagonist of hepatocyte growth factor (HGF). The results indicated that engineered PDMSCs preferably migrate into GBM cells by transwell coculture system. In addition, the proliferation of the GBM cells significantly reduced after coculture with these cells. In fact, manipulated PDMSCs inhibited growth of tumor cells by induction of apoptosis. Our findings suggested that besides having antitumor effects, PDMSCs can also be applied as an ideal cellular vehicle to target the glioblastoma multiforme.  相似文献   

17.
Summary Two human cell lines (GL15 and GL22) derived from glioblastoma multiforme were established and characterized by immunohistochemical and cytogenetic techniques. The expression of glial fibrillary acidic proteins and the karyotype were analyzed at different passages for both cell lines. The course of marker-pattern differed in the two cell lines. The main findings were a cell-density-dependent expression of glial fibrillary acidic protein in the cell line GL15 at all passages and a decreased expression of this protein over time in the cell line GL22. Both cell lines had hyperdiploid karyotypes and exhibited glioma-specific chromosomal abnormalities (gain of chromosome 7 and loss of chromosome 10). In the GL15 cell line no relevant chromosomal changes were produced during culturing, whereas in the GL22 cell line a hypodiploid clone appeared at the 42nd passage. The immunohistochemical and cytogenetic data resulting from this study confirm that the two cell lines established in our laboratory originated from astrocytic tumor cells.Abbreviations MHG malignant human gliomas - GFAP glial fibrillary acidic protein - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum - GTG banding trypsin-Giemsa banding - TBS TRIS-buffered saline 10 mM pH 7.6 - p short arm of chromosome; q long arm of chromosome - der derivative chromosome  相似文献   

18.
FUTAO  HELIU 《Cell research》1996,6(2):145-153
Effects of antisense epidermal growth factor receptor (EGFR) sequence on apoptotic cell death were examined in a human hepatoma cell line BEL-7404 cells.In the cells of JX-1,a sub clone of BEL-7404 stably transfected with antisense EGFR vector (Cell Research,3:75,1993),an enhanced rate(9.5%) of spontaneous apoptosis was detected by flow cytometry,whereas the rates of spontaneous apoptosis in JX-0 cells,a sub-clone of BEL-7404 transfected by control vector,and the parent BEL-7404 transfected by control vector,and the parent BEL-7404 transfected by control vector,and the parent BEL-7404 cells were almost equal and about 1.7%.Serum-starvation for 72h increased the rate of apoptosis of JX-lcells up to 33.7%,while JX-0 and BEL-7404 cells,under the same condition,produced less than 5% of apoptotic cells.Observation with electron microscope demonstrated that condensation and fragmentation of chromatin and formation of apoptotic bodies often occurred in JX-1 cells,especially during serumstarvation.These results,combined with the data of DNA fragmentation Elisa test,suggested that antisense EGFR sequence enhances apoptosis in the human hepatoma cells.Comparison of intracellular Ca^2 level and the responsiveness of JX-1 cells to the induced action of EGF and tharpsigargin (TG) treatment with that of control JX-0 cells indicated that antisense egfr might interrupt the EGF/EGFR sigaling pathway resulting in the decreass of intracellular Ca^2 pool content as well as the responsiveness of these cells to the extracellular signals.These findings suggest that antisense EGFR either directly or indirectly regulates Ca^2 storage in endoplasmic reticulum,thereby enhances apoptosis in the human hepatoma cells.  相似文献   

19.
There is increasing evidence for the presence of cancer stem cells (CSCs) in malignant brain tumors, and these CSCs may play a pivotal role in tumor initiation, growth, and recurrence. Vascular endothelial growth factor (VEGF) promotes the proliferation of vascular endothelial cells (VECs) and the neurogenesis of neural stem cells. Using CSCs derived from human glioblastomas and a retrovirus expressing VEGF, we examined the effects of VEGF on the properties of CSCs in vitro and in vivo. Although VEGF did not affect the property of CSCs in vitro, the injection of mouse brains with VEGF-expressing CSCs led to the massive expansion of vascular-rich GBM, tumor-associated hemorrhage, and high morbidity, suggesting that VEGF promoted tumorigenesis via angiogenesis. These results revealed that VEGF induced the proliferation of VEC in the vascular-rich tumor environment, the so-called stem cell niche.  相似文献   

20.
Fusion proteins composed of tumor binding agents and potent catalytic toxins show promise for intracranial therapy of brain cancer and an advantage over systemic therapy. Glioblastoma multiforme (GBM) is the most common form of brain cancer and overexpresses IL-13R. Thus, we developed an interleukin-13 receptor targeting fusion protein, DT(390)IL13, composed of human interleukin-13 and the first 389 amino acids of diphtheria toxin. To measure its ability to inhibit GBM, DT(390)IL13 was tested in vitro and found to inhibit selectively the U373 MG GBM cell line with an IC(50) around 12 pmol/l. Cytotoxicity was neutralized by anti-human-interleukin-13 antibody, but not by control antibodies. In vivo, small U373 MG glioblastoma xenografts in nude mice completely regressed in most animals after five intratumoral injections of 1 microg of DT(390)IL13 q.o.d., but not by the control fusion protein DT(390)IL-2. DT(390)IL13 was also tested against primary explant GBM cells of a patient's excised tumor and the IC(50) was similar to that measured for U373 MG. Further studies showed a therapeutic window for DT(390)IL13 of 1-30 microg/injection and histology studies and enzyme measurements showed that the maximum tolerated dose of DT(390)IL13 had little effect on kidney, liver, spleen, lung and heart in non-tumor-bearing immunocompetent mice. Together, these data suggest that DT(390)IL13 may provide an important, alternative therapy for brain cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号