首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated whether arachidonic acid could regulate tissue transglutaminase (tTGase) via intracellular reactive oxygen species (ROS) in NIH3T3 cells. tTGase was identified in NIH3T3 cells by Western blot and confocal microscopy. Arachidonic acid elevated in situ tTGase activity in dose- and time-dependent manners with a maximal level at 1h, and ROS scavengers, N-(2-mercaptopropionyl)glycine and catalase, blocked the tTGase activation by arachidonic acid. The activation of tTGase by arachidonic acid was largely inhibited by transfection of tTGase siRNA. The role of intracellular ROS in the activation of in situ tTGase was supported by the activation of in situ tTGase by exogenous H(2)O(2). Arachidonic acid stimulated the formation of stress fibers in a dose- and time-dependent manner, and the ROS scavengers suppressed the arachidonic acid-induced formation of stress fibers. These results suggested that the activation of in situ tTGase and stress fiber formation by arachidonic acid was mediated by intracellular ROS in NIH3T3 cells.  相似文献   

2.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.  相似文献   

3.
Advances in sensor technologies have enhanced our understanding of the roles played by reactive oxygen species (ROS) in a number of physiological and pathological processes. However, high inter-reactivity and short life spans has made real-time monitoring of ROS in cellular systems challenging. Fluorescent dyes capable of intracellular ROS measurements have been reported. However, these dyes are known to be intrinsically cytotoxic and thus can potentially significantly alter cellular metabolism and adversely influence in vitro data. Reported here is the development and in vitro application of a novel ROS responsive nanosensor, based on PEBBLE (Probes Encapsulated By Biologically Localised Embedding) technology. The ROS sensitive fluorescent probe dihydrorhodamine 123 (DHR 123) was employed as the sensing element of the PEBBLE through entrapment within a porous, bio-inert polyacrylamide nanostructure enabling passive monitoring of free radical flux within the intracellular environment. Successful delivery of the nanosensors into NR8383 rat alveolar macrophage cells via phagocytosis was achieved. Stimulation of PEBBLE loaded NR8383 cells with phorbol-12-myristate-13-acetate (PMA) enabled real time monitoring of ROS generation within the cell without affecting cellular viability. These data suggest that PEBBLE nanosensors could offer significant advantages over existing technologies used in monitoring the intracellular environment.  相似文献   

4.
5.
Observations of apoptosis in virtual anaerobiosis have raised doubts on the significance of reactive oxygen species in the cascade of events of programmed cell death. This work presents evidence that cells and mitochondrial preparations produce similar levels of hydrogen peroxide under either aerobic or virtually anaerobic conditions. These levels are relevant to the increased production of radicals induced by a ceramide analog that promotes apoptosis. This ceramide acts at center o of mitochondrial complex III.  相似文献   

6.
Impaired cardiovascular function during acute myocardial infarction (MI) is partly associated with recruitment of activated polymorphonuclear neutrophils. The protective role of arjunolic acid (AA; 2,3,23-trihydroxy olean-12-en-28-oic acid) is studied in the modulation of neutrophil functions in vitro by measuring the reactive oxygen species (ROS) generation. Neutrophils were isolated from normal and acute MI mice to find out the efficacy of AA in reducing oxidative stress. Stimulation of neutrophils with phorbol-12-myristate-13-acetate (PMA) resulted in an oxidative burst of superoxide anion (O2) and enhanced release of lysosomal enzymes. The treatment of neutrophils with PMA induced phosphorylation of Ser345 on p47phox, a cytosolic component of NADPH oxidase. Furthermore, we observed activated ERK induced phosphorylation of Ser345 in MI neutrophils. Treatment with AA significantly inhibited the phosphorylation of P47phox and ERK in the stimulated controls and MI neutrophils. Oxidative phosphorylation activities in MI cells were lower than in control, while the glycolysis rates were elevated in MI cells compared to the control. In addition, we observed AA decreased intracellular oxidative stress and reduced the levels of O2 in neutrophils. This study therefore identifies targets for AA in activated neutrophils mediated by the MAPK pathway on p47phox involved in ROS generation.  相似文献   

7.
Dihydrocalcein (H2-calcein) is recommended as a superior probe for intracellular radical (ROS) detection as different to dichlorodihydrofluorescein (H2-DCF), its oxidation product calcein is thought not to leak out of cells. We determined whether H2-calcein is a useful tool to measure ROS in vascular smooth muscle cells. In vitro, both compounds were oxidized by peroxynitrite, hydroxyl radicals and peroxidase, but not hydrogen peroxide or nitric oxide. The intracellular half-life of calcein was several hours whereas that of DCF was approximately 5 min. Intracellular ROS, as generated by the angiotensin II (Ang II)-activated NADPH oxidase, did not increase the oxidation of H2-calcein but increased the oxidation of H2-DCF by approximately 50%. Similar changes were detected using electron spin resonance spectroscopy. Inhibition of the NADPH oxidase using gp91ds-tat prevented the Ang II-induced increase in DCF fluorescence, without affecting cells loaded with H2-calcein. Diphenylene iodonium (DPI), which inhibits all flavin-dependent enzymes, including those in the respiratory chain, had little effect on the basal but prevented the Ang II-induced oxidation of H2-DCF. In contrast, DPI inhibited H2-calcein oxidation in non-stimulated cells by almost 50%. Blockade of respiratory chain complex I inhibited H2-calcein oxidation, whereas inhibitors of complex III were without effect. Calcein accumulated in the mitochondria, whereas DCF was localized in the cytoplasm. In submitochondrial particles, H2-calcein, but not H2-DCF inhibited complex I activity.

These observations indicate that H2-DCF is an indicator for intracellular ROS, whereas the oxidation of H2-calcein most likely occurs as a consequence of direct electron transfer to mitochondrial complex I.  相似文献   

8.
In this study, we investigated effects of a novel NAD(P)H oxidase (Nox)-inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870) on oxidized low-density lipoprotein (oxLDL)-mediated reactive oxygen species (ROS) formation in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were cultured to confluence and ROS formation was induced with 50microg/ml oxLDL for 2h. ROS formation was detected by chemiluminescence (CL) using the Diogenes reagent. OxLDL induced ROS formation in human endothelial cells (171+/-12%; n=10, P<0.05 vs. control). This augmented ROS formation in response to oxLDL was completely inhibited by the Nox inhibitor VAS2870 (101+/-9%; n=7, P<0.05 vs. oxLDL). Similar results were obtained with superoxide dismutase (91+/-7%; n=7, P<0.05 vs. oxLDL). However, the Nox4 mRNA expression level was neither changed by oxLDL nor VAS2870. We conclude that VAS2870 could provide a novel strategy to inhibit the augmented endothelial superoxide anion formation in response to cardiovascular risk factors.  相似文献   

9.
Terrestrial plants most often encounter drought stress because of erratic rainfall which has become compounded due to present climatic changes.Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress.  相似文献   

10.
The oxidation of polyunsaturated fatty acids (PUFAs) by reactive oxygen species (ROS) is linked to aging and to many diseases. We herein employ initiating peroxyl radical (ROO•) derived from the decomposition of 2,2′-azobis(2-amidinopropane dihydrochloride), hydroxyl radical generated by the Fenton reaction and peroxyl radical (ROO•) and alkoxyl radical (LO•) derived from PUFAs by addition of Cu2+ as ROS sources to oxidize glycerides under alkaline conditions in the presence of methanol instead of being treated traditionally by diazomethane (CH2N2) under acidic conditions (pH=2.0), to obtain corresponding methyl esters for the combination of gas chromatography with mass spectrometry determination. It was found that all the PUFAs in the membrane are perfectly preserved after oxidation by ROS, even though sufficient time is available for the interaction between human erythrocytes and ROS. This indicates that ROS do not damage PUFAs during reaction time. However, three products (cholesta-4,6-dien-3-ol, cholesta-4,6-dien-3-one, and cholesta-3,5-dien-7-one) are produced from the oxidation of cholesterol within this time frame. This qualitative finding, suggests that the cholesterol in the membrane of human erythrocytes is more susceptible to ROS-induced oxidation than are PUFAs, and compels us to re-evaluate the physiological roles of cholesterol and PUFAs in the human erythrocyte membrane.  相似文献   

11.
Non-fluorescent dichlorofluorescin (DCFH) was converted to fluorescent products by photo-irradiation during observations with spectrofluorometer and fluorescence microscopy. Photo-irradiation of DCFH at 250, 300, 330, 400, 500, or 600 nm generated fluorescent dichlorofluorescein (DCF), an oxidation product of DCFH, and an unrecognized fluorescent product. The ratio of the unknown product to DCF varied from 0.15 to 8.21 depending on wavelength. Although reactive oxygen species scavengers, such as catalase, superoxide dismutase, and sodium azide, did not suppress the increase in non-specified fluorescence, reagents such as ascorbic acid, mercaptopropionyl glycine, and methoxycinnamic acid, in a cell-free system, almost completely suppressed it with little effect on the fluorescence of DCF. Meanwhile, ascorbic acid also suppressed non-specified fluorescence in cells, but not completely. At low concentrations of DCFH, the speed of increasing fluorescence was considerably retarded, to such a degree that the fluorescence increase in cells during fluorescence microscopic observation was negligible. The addition, at the time of evaluation, of the above reagents to cell-free systems and, in cell systems, reducing the concentration of DCFH, effectively suppressed the photoreaction of DCFH.  相似文献   

12.
Production of minute concentrations of superoxide (O2) and nitrogen monoxide (nitric oxide, NO) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance—a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2, hydrogen peroxide (H2O2), and NO. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2, H2O2, NO, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.  相似文献   

13.
In monolayers of cultured rat astrocytes a number of agents that induce oxidative stress act synergistically with exposure to copper leading to rapid depolarization of the mitochondrial membrane potential (Psi m) and increased reactive oxygen species (ROS) production. Copper sensitized astrocytes to the action of menadione, an intracellular generator of superoxide anion radical, exogenous hydrogen peroxide (H2O2) and rotenone, an inhibitor of mitochondrial electron transport chain complex I. However, significant differences were observed in the ability to modulate the copper-enhanced oxidative stress depending on which stressor was used. The inhibitor of mitochondrial permeability transition cyclosporin A attenuated the effect of copper and rotenone, but had no protective action in the case of H2O2/copper and menadione/copper combinations. The H2O2 scavenger pyruvate was effective at protecting mitochondria against damage associated with the combined exposure to H2O2/copper and menadione/copper but not to the rotenone/copper combination. The antioxidant Trolox was ineffective at protecting against any of these actions and indeed had a damaging effect when combined with copper. The membrane-permeable copper chelator neocuproine combined with sensitizing concentrations of menadione caused a decrease in Psi m, mimicking the action of copper. Penicillamine, a membrane-impermeable copper chelator, was effective at reducing copper sensitization. Endogenous copper, mobilized during periods of oxidative stress, may play a role in the pathophysiology of brain injury. Our results suggest that this might be particularly dangerous in dysfunctional conditions in which the mitochondrial electron transport chain is compromised.  相似文献   

14.
Helicobacter pylori (H. pylori) induces reactive oxygen species (ROS) production that contribute to pathogenesis of a variety of H. pylori-related gastric diseases, as shown in animal and human studies. Helicobacter pylori infection is also associated with variety of systemic extragastric diseases in which H. pylori-related ROS production might also be involved in the pathogenesis of these systemic conditions. We proposed that Hp-related ROS may play a crucial role in the pathophysiology of Hp-related systemic diseases including Alzheimer’s disease, multiple sclerosis, glaucoma and other relative neurodegenerative diseases, thereby suggesting introduction of relative ROS scavengers as therapeutic strategies against these diseases which are among the leading causes of disability and are associated with a large public health global burden. Moreover, we postulated that H. pylori-related ROS might also be involved in the pathogenesis of extragastric common malignancies, thereby suggesting that H. pylori eradication might inhibit the development or delay the progression of aforementioned diseases. However, large-scale future studies are warranted to elucidate the proposed pathophysiological mechanisms, including H. pylori-related ROS, involved in H. pylori-associated systemic and malignant conditions.  相似文献   

15.
16.
Abstract

Metabolic stresses associated with disease, ageing, and exercise increase the levels of reactive oxygen species (ROS) in skeletal muscle. These ROS have been linked mechanistically to adaptations in skeletal muscle that can be favourable (i.e. in response to exercise) or detrimental (i.e. in response to disease). The magnitude, duration (acute versus chronic), and cellular origin of the ROS are important underlying factors in determining the metabolic perturbations associated with the ROS produced in skeletal muscle. In particular, insulin resistance has been linked to excess ROS production in skeletal muscle mitochondria. A chronic excess of mitochondrial ROS can impair normal insulin signalling pathways and glucose disposal in skeletal muscle. In contrast, ROS produced in skeletal muscle in response to exercise has been linked to beneficial metabolic adaptations including mitochondrial biogenesis and muscle hypertrophy. Moreover, unlike insulin resistance, exercise-induced ROS appears to be primarily of non-mitochondrial origin. The present review summarizes the diverse ROS-targeted metabolic outcomes associated with insulin resistance versus exercise in skeletal muscle, thus, presenting two contrasting perspectives of pathologically harmful versus physiologically beneficial ROS. Here, we discuss the key sites of ROS production during exercise and the effect of ROS in skeletal muscle of people with type 2 diabetes.  相似文献   

17.
Accumulating evidence suggests that the pathophysiology of diabetes is analogous to chronic inflammatory states. Circulating levels of inflammatory cytokines such as IL-6 and tumor necrosis factor alpha (TNFalpha) are increased in both type 1 and type 2 diabetes. TNFalpha plays an important role in the pathogenesis of insulin resistance in type 2 diabetes. However, the reason for this increase remains unclear. Levels of the dicarbonyl methylglyoxal (MGO) are elevated in diabetic plasma and MGO-modified bovine serum albumin (MGO-BSA) can trigger cellular uptake of TNF. Therefore we tested the hypothesis that MGO-modified proteins may cause TNFalpha secretion in macrophage-like RAW 264.7 cells. Treatment of cells with MGO-BSA induced TNFalpha release in a dose-dependent manner. MGO-modified ribonuclease A and chicken egg ovalbumin had similar effects. Cotreatment of cells with antioxidant reagent N-acetylcysteine (NAC) inhibited MGO-BSA-induced TNFalpha secretion. MGO-BSA stimulated the simultaneous activation of p44/42 and p38 mitogen-activated protein kinase. PD98059, a selective MEK inhibitor, inhibited MGO-BSA-induced TNFalpha release as well as ERK phosphorylation. Pretreatment of cells with NAC also resulted in inhibition of MGO-BSA-induced ERK phosphorylation. MGO-BSA induced dose-dependent NFkappaB activation as shown by electrophoresis mobility shift assay. The MGO-BSA-induced NFkappaB activation was prevented in the presence of PD98059, NAC, and parthenolide, a selective inhibitor of NFkappaB. Furthermore, the NFkappaB inhibitor parthenolide suppressed MGO-BSA-induced TNFalpha secretion. Confocal microscopy using dichlorofluorescein to demonstrate intracellular reactive oxygen species (ROS) showed that MGO-BSA produced more ROS compared with native BSA. MGO-BSA could also stimulate protein kinase C (PKC) translocation to the cell membrane, considered a key signaling pathway in diabetes. However, there was no evidence that PKC was involved in TNFalpha release based on inhibition by calphostin C and staurosporine. Our findings suggest that the presence of chronically elevated levels of MGO-modified bovine serum albumin may contribute to elevated levels of TNFalpha in diabetes.  相似文献   

18.
Mitogen-activated protein (MAP) kinase signaling cascades are multi-functional signaling networks that influence cell growth, differentiation, apoptosis, and cellular responses to stress. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase that triggers apoptogenic kinase cascade leading to the phosphorylation/activation of c-Jun N-terminal kinases and p38-MAP kinase, which are responsible for inducing apoptotic cell death. This pathway plays a pivotal role in transduction of signals from different apoptotic stimuli. In the present review, we summarized the recent evidence concerning MAP kinase-dependent apoptotic pathway and its regulation in the mammalian cells and organism in vivo. We have shown that the key messengers of regulation of this pathway are the reactive oxygen and nitrogen species. The role of protein oxidation and S-nitrosation in induction of apoptotic cell death via ASK1 is discussed. Also we have outlined other recently discovered signal transduction processes involved in the regulation of ASK1 activity and downstream pathway.  相似文献   

19.
20.
This work describes the addition of a lysine derivative to guanine base in a nucleoside, an oligonucleotide, and to a large DNA that occurs via oxidation by copper generated reactive oxygen species. Nucleophiles present during oxidation leads to the formation of adducts. In this work, 2′-deoxyguanosine is oxidized by copper generated reactive oxygen species in the presence of a lysine derivative, Nα-acetyl-lysine methyl ester. Under these conditions the guanidinohydantoin-lysine adduct is observed in a relative yield of 27% when compared to other guanine oxidation products. MS2 strongly supports that lysine is added to the 5-position during the formation of guanidinohydantoin-lysine. A fourteen-nucleotide DNA duplex was oxidized under similar conditions. Digestion showed formation of the same guanidinohydantoin-lysine nucleoside. The reaction was then examined on a 392-nucleotide DNA substrate. Oxidation in the presence of the lysine ester showed adduct formation as stops in a primer extension assay. Adducts predominately formed at a 5′-GGG at position 415. Six of the seven sites that showed reaction greater than 3-fold above background were guanine sites. We conclude from this study that copper can catalyze the formation of DNA-protein adducts and may form in cells with elevated copper and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号