首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-culture conditions are well established in which Schwann cells (SCs) derived from immature or adult rats proliferate and form myelin in response to contact with sensory axons. In a companion article, we report that populations of adult-derived human Schwann cells (HASCs) fail to function under these co-culture conditions. Furthermore, we report progressive atrophy of neurons in co-cultures containing populations of either human fibroblasts. Two factors that might account for the insufficiency of the co-culture system to support HASC differentiation are the failure of many HASCs to proliferate and the influence of contaminating fibroblasts. To minimize fibroblast contamination of neuron-HASC co-cultures, we used fluorescence-activated cell sorting to highly purify HASC populations (to more than 99.8%). To stimulate expansion of the HASC population, a mitogenic mixture of heregulin (HRGβ1 amino acid residues 177-244; 10 nM), cholera toxin (100 ng/mL), and forskolin (1 μM) was used. When these purified and expanded HASCs were co-cultured with embryo-derived rat sensory neurons, neuronal shrinkage did not occur and after 4 to 6 weeks some myelin segments were seen in living co-cultures. This myelin was positively identified as human by immunostaining with a monoclonal antibody specific to the human peripheral myelin protein P0 (antibody 592). Although this is the first reported observation of myelination by HASCs in tissue culture, it should be noted that myelination occurred more slowly and in much less abundance than in comparable cultures containing adult rat-derived SCs. We anticipate that further refinements of the HASC co-culture system that enhance myelin formation will provide insights into important aspects of human SC biology and provide new opportunities for studies of human peripheral neuropathies. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Dichloroacetate (DCA) is an investigational drug for genetic mitochondrial diseases whose use has been mitigated by reversible peripheral neuropathy. We investigated the mechanism of DCA neurotoxicity using cultured rat Schwann cells (SCs) and dorsal root ganglia (DRG) neurons. Myelinating SC-DRG neuron co-cultures, isolated SCs and DRG neurons were exposed to 1-20 mm DCA for up to 12 days. In myelinating co-cultures, DCA caused a dose- and exposure-dependent decrease of myelination, as determined by immunolabeling and immunoblotting for myelin basic protein (MBP), protein zero (P0), myelin-associated glycoprotein (MAG) and peripheral myelin protein 22 (PMP22). Partial recovery of myelination occurred following a 10-day washout of DCA. DCA did not affect the steady-state levels of intermediate filament proteins, but promoted the formation of anti-neurofilament antibody reactive whirls. In isolated SC cultures, DCA decreased the expression of P0 and PMP22, while it increased the levels of p75(NTR) (neurotrophin receptor), as compared with non-DCA-treated samples. DCA had modest adverse effects on neuronal and glial cell vitality, as determined by the release of lactate dehydrogenase. These results demonstrate that DCA induces a reversible inhibition of myelin-related proteins that may account, at least in part, for its clinical peripheral neuropathic effects.  相似文献   

3.
Current in vitro models to investigate the consequence of oligodendrocyte-specific loss-of-function mutations on myelination are primarily limited to co-culture experiments, which do not accurately recapitulate the complex in vivo environment. Here, we describe the development of an in vitro model of myelination and myelin maintenance in which oligodendrocyte precursor cells are transplanted into organotypic cerebellar slice cultures derived from dysmyelinated shiverer mice. Compared to neuron-oligodendrocyte co-cultures, organotypic slices more closely mimic the environment in vivo, while utilizing a genetic background that allows for straight-forward identification of myelin generated by transplanted cells. We show at the ultrastructural level that the myelin generated by wild-type transplanted oligodendrocytes is compact and terminates in cytoplasmic loops that form paranodal junctions with the axon. This myelination results in the appropriate sequestering of axonal proteins into specialized domains surrounding the nodes of Ranvier. We also demonstrate the applicability of this approach for xenograft transplantation of oligodendrocyte precursor cells derived from rat or human sources. This method provides a time-efficient and cost-effective adjunct to conditional knockout mouse lines or in vivo transplantation models to study oligodendrocyte-specific loss-of-function mutations. Furthermore, the approach can be readily used to assess the effect of pharmacological manipulations on myelin, providing a tool to better understand myelination and develop effective therapeutic strategies to treat myelin-related diseases.  相似文献   

4.
Schwann cells (SCs) co-cultured with sensory neurons require ascorbate supplementation for basal lamina assembly and differentiation into myelinating cells. The ascorbate requirement can be bypased by adding a purifed basal lamina component, laminin, to SC/neuron cocultures. We have examined the role of laminin receptors, Namely, the β1 subfamily of integrins, in the process of myelination. We demonstrate by immunostaining or immunoprecipitation that undifferentiated SCs in contact with axons express large amounts of the β1 subunit in association with the α1 or α6 subunit. In co-cultures of myelinating SCs, α1β1 is no longer present, α6β1 is still present but at reduced levels, and α6β4 is expressed at much higher levels than in co-cultures of undifferentiated SCs. Immunogold labelling at the electron microscope level suggested that β1 integrins are randomly distributed on undifferentiated SCs, become localized to the SC surface contacting basal lamina in differentiating SCs before the onset of myelination, and are not detected on myelinating SCs. Fab fragments of β1 function-blocking antibody block both attachment of isolated SCs to laminin and formation of myelin sheaths by SCs co-cultured with neurons in ascorbate-supplemented medium. SCs unable to myelinate in the presence of the anti-β1 antibody assemble patchy basal lamina that is only loosely attached to the cell surface and in some cases appears to be detaching from the membrane. In contrast, an α1β1 function-blocking antibody only partially blocks attachment of isolated SCs to laminin but has no inhibitory effect on SC myelination. These results are consistent with the hypothesis that a member of the β1 subfamily of integrins other than α1β1 binds laminin present in basal lamina to the SC surface and transduces signals that are critical for initiation of SC differentiation into a myelinating cell. 1994 John Wiley & Sons, Inc.  相似文献   

5.
6.
Protective properties of moderate wine consumption against cancers, cardiovascular, metabolic and degenerative diseases have been reported in various clinical studies. Here, we analysed the effect of red wine (RW) and white wine (WW) on myelination using an in vitro embryonic co-culture mouse model. The total amount of myelin was found to be significantly increased after RW and WW treatment, while only RW significantly increased the number of internodes. Both types of wine increased rat Schwann cell- (rSC) expression of the NAD+-dependent deacetylase sirtuin-two-homolog 2 (Sirt2), a protein known to be involved in myelination.Detailed chemical analysis of RW revealed a broad spectrum of anthocyanins, piceids, and phenolics, including resveratrol (RSV). In our assay system RSV in low concentrations induced myelination. Furthermore RSV raised intracellular glutathione concentrations in rSCs and in co-cultures and therefore augmented antioxidant capacity.We conclude that wine promotes myelination in a rodent in vitro model by controlling intracellular metabolism and SC plasticity. During this process, RSV exhibits protective properties; however, the fostering effect on myelinaton during exposure to wine appears to be a complex interaction of various compounds.  相似文献   

7.
CLIP3 (cytoplasmic linker protein 3) is a 547 amino acid residue cytoplasmic protein that localises to Golgi stacks and tubulovesicular elements juxtaposed to Golgi cisternae. Composed of three Ank (ankyrin) repeats and two CAP-Gly (cytoskeleton-associated protein-glycine) domains, CLIP3 may function as a cytoplasmic linker protein that is involved in TGN–endosome dynamics. To define the expression and role of CLIP3 during peripheral nervous system degeneration and regeneration, we created an acute sciatic nerve injury (SNI) model in adult rats. Western blot analyses revealed prominent up-regulation of CLIP3 and PCNA (proliferating cell nuclear antigen) protein levels at 3?days after SNI. Immunohistochemistry displayed that the expression of CLIP3 was noticeably increased in the injured nerve. Immunofluorescence further revealed that the CLIP3 and PCNA proteins colocalised respectively with S100 in the cytoplasm of Schwann cells. The expression profile of the SC/neuron co-cultures demonstrated that CLIP3 and PCNA protein levels were markedly expressed during the early stage of myelination. These results suggest that CLIP3 is likely associated with the myelination of proliferating Schwann cells, and nerve tissue regeneration after peripheral nerve injury. CLIP3 and PCNA expression during early myelination may be related to the direct uptake and transport of lipids and cholesterol, which were derived from the degenerating myelin, by Schwann cells to prepare for the formation of myelin sheath-like structures around regenerated axons after SNI.  相似文献   

8.
Myelination is an essential prerequisite for the nervous system to transmit an impulse efficiently by a saltatory conduction. In the peripheral nervous system (PNS), Schwann cells (SCs) engage in myelination. However, a detailed molecular mechanism underlying myelination still remains unclear. In this study, we hypothesized that the primary cilia of SCs are the regulators of Hedgehog (Hh) signaling-mediated myelination. To confirm our hypothesis, we used mouse dorsal root ganglion (DRG)/SC co-cultures, wherein the behavior of SCs could be analyzed by maintaining the interaction of SCs with DRG neurons. Under these conditions, SCs had primary cilia, and Hh signaling molecules accumulated on the primary cilia. When the SCs were stimulated by the addition of desert hedgehog or smoothened agonist, formation of myelin segments on the DRG axons was facilitated. On the contrary, upon administration of cyclopamine, an inhibitor of Hh signaling, myelin segments became comparable to those of controls. Of note, the ratio of SCs harboring primary cilium reached the highest point during the early phase of myelination. Furthermore, the strongest effects of Hh on myelination were encountered during the same stage. These results collectively indicate that Hh signaling regulates myelin formation through primary cilia in the PNS.  相似文献   

9.
Oligodendrocytes are neuroglial cells responsible, within the central nervous system, for myelin sheath formation that provides an electric insulation of axons and accelerate the transmission of electrical signals. In order to be able to produce myelin, oligodendrocytes progress through a series of differentiation steps from oligodendrocyte precursor cells to mature oligodendrocytes (migration, increase in morphologic complexity and expression pattern of specific markers), which are modulated by cross talk with other nerve cells. If during the developmental stage any of these mechanisms is affected by toxic or external stimuli it may result into impaired myelination leading to neurological deficits. Such being the case, several approaches have been developed to evaluate how oligodendrocyte development and myelination may be impaired. The present review aims to summarize changes that oligodendrocytes suffer from precursor cells to mature ones, and to describe and discuss the different in vitro models used to evaluate not only oligodendrocyte development (proliferation, migration, differentiation and ability to myelinate), but also their interaction with neurons and other glial cells. First we discuss the temporal oligodendrocyte lineage progression, highlighting the differences between human and rodent, usually used as tissue supply for in vitro cultures. Second we describe how to perform and characterize the different in vitro cultures, as well as the methodologies to evaluate oligodendrocyte functionality in each culture system, discussing their advantages and disadvantages. Finally, we briefly discuss the current status of in vivo models for oligodendrocyte development and myelination.  相似文献   

10.
11.
12.
The cerebellum is one of the most affected brain regions in the course of bilirubin-induced neurological dysfunction. We recently demonstrated that unconjugated bilirubin (UCB) reduces oligodendrocyte progenitor cell (OPC) survival and impairs oligodendrocyte (OL) differentiation and myelination in co-cultures of dorsal root ganglia neurons and OL. Here, we used organotypic cerebellar slice cultures, which replicate many aspects of the in vivo system, to dissect myelination defects by UCB in the presence of neuroimmune-related glial cells. Our results demonstrate that treatment of cerebellar slices with UCB reduces the number of myelinated fibres and myelin basic protein mRNA expression. Interestingly, UCB addition to slices increased the percentage of OPC and decreased mature OL content, whereas it decreased Olig1 and increased Olig2 mRNA expression. These UCB effects were associated with enhanced gliosis, revealed by an increased burden of both microglia and astrocytes. Additionally, UCB treatment led to a marked increase of tumor necrosis factor (TNF)-α and glutamate release, in parallel with a decrease of interleukin (IL)-6. No changes were observed relatively to IL-1β and S100B secretion. Curiously, both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist and TNF-α antibody partially prevented the myelination defects that followed UCB exposure. These data point to a detrimental role of UCB in OL maturation and myelination together with astrocytosis, microgliosis, and both inflammatory and excitotoxic responses, which collectively may account for myelin deficits following moderate to severe neonatal jaundice.  相似文献   

13.
Insulin-like growth factor (IGF)-1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF-1 receptor (IGF-1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS-1 and -2 serve as intracellular IGF-1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS-2 in myelination, we analyzed myelination in IRS-2 deficient (IRS-2(-/-)) mice and age-matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS-2(-/-) brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10-IRS-2(-/-) mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up-regulation of IRS-1 expression and increased IGF-1R signaling were observed in IRS-2(-/-) mice at P10-14, indicating a compensatory mechanism to overcome IRS-2 deficiency. Adult IRS-2(-/-) mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain-specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF-1R/IRS-2 mediated signals are critical for appropriate timing of myelination in vivo.  相似文献   

14.
One of the most important developmental modifications of the nervous system is Schwann cell myelination of axons. Schwann cells ensheath axons to create myelin segments to provide protection to the axon as well as increase the conduction of action potentials. In vitro neuronal systems provide a unique modality to study a variety of factors influencing myelination as well as diseases associated with myelin sheath degradation. This work details the development of a patterned in vitro myelinating dorsal root ganglion culture. This defined system utilized a serum-free medium in combination with a patterned substrate, utilizing the cytophobic and cytophilic molecules (poly)ethylene glycol (PEG) and N-1[3 (trimethoxysilyl) propyl] diethylenetriamine (DETA), respectively. Directional outgrowth of the neurites and subsequent myelination was controlled by surface modifications, and conformity to the pattern was measured over the duration of the experiments. The myelinated segments and nodal proteins were visualized and quantified using confocal microscopy. This tissue-engineered system provides a highly controlled, reproducible model for studying Schwann cell interactions with sensory neurons, as well as the myelination process, and its effect on neuronal plasticity and peripheral nerve regeneration. It is also compatible for use in bio-hybrid constructs to reproduce the stretch reflex arc on a chip because the media combination used is the same that we have used previously for motoneurons, muscle, and for neuromuscular junction (NMJ) formation. This work could have application for the study of demyelinating diseases such as diabetes induced peripheral neuropathy and could rapidly translate to a role in the discovery of drugs promoting enhanced peripheral nervous system (PNS) remyelination.  相似文献   

15.
Aim The interactions between primary sensory neurons and cardiac myocytes are still unclear. In the present study, the co-culture model of dorsal root ganglion (DRG) explant and cardiac myocytes was used to characterize the morphological relationship between primary sensory nerve endings and cardiac myocytes and to investigate whether cardiac myocytes could induce substance P (SP) and calcitonin gene-related peptide (CGRP) synthesis in DRG neurons and release from DRG neurons in the neuromuscular co-cultures. Methods The formation of neuromuscular junctions was observed with scanning electron microscopy (SEM). SP and CGRP expression were detected by immunocytochemistry. Basal SP and CGRP release and capsaicin-evoked SP and CGRP release were analyzed by radioimmunoassay (RIA). Results In this study, neuromuscular junctions were observed in the co-cultures of DRG explant and cardiac myocytes. SP-immunoreactive (IR) and CGRP-IR neurons were detected in both neuromuscular co-cultures and DRG explant cultures, but the number of SP-IR and CGRP-IR neurons migrating from DRG explant was significantly increased in neuromuscular co-cultures. Capsaicin-evoked SP and CGRP release but not basal SP and CGRP release in neuromuscular co-cultures increased significantly as compared with that in the cultures of DRG explant alone. Conclusions The results implicated that the morphological relationship between sensory nerve terminal and cardiac myocyte is much more close in vitro than it is in vivo. Cardiac myocytes may induce sensory neuropeptide synthesis and capsaicin-evoked neuropeptide release in neuromuscular co-cultures. Further experiment needs to be performed about the significance of neuropeptide synthesis and capsaicin-evoked neuropeptide release induced by target cardiac myocytes. Zhen Liu and Huaxiang Liu contributed equally to this article.  相似文献   

16.
High levels of serum unconjugated bilirubin (UCB) in newborns are associated with axonal damage and glial reactivity that may contribute to subsequent neurologic injury and encephalopathy (kernicterus). Impairments in myelination and white matter damage were observed at autopsy in kernicteric infants. We have recently reported that UCB reduces oligodendrocyte progenitor cell (OPC) survival in a pure OPC in vitro proliferative culture. Here, we hypothesized that neonatal hyperbilirubinemia may also impair oligodendrocyte (OL) maturation and myelination. We used an experimental model of hyperbilirubinemia that has been shown to mimic the pathophysiological conditions leading to brain dysfunction by unbound (free) UCB. Using primary cultures of OL, we demonstrated that UCB delays cell differentiation by increasing the OPC number and reducing the number of mature OL. This finding was combined with a downregulation of Olig1 mRNA levels and upregulation of Olig2 mRNA levels. Addition of UCB, prior to or during differentiation, impaired OL morphological maturation, extension of processes and cell diameter. Both conditions reduced active guanosine triphosphate (GTP)-bound Rac1 fraction. In myelinating co-cultures of dorsal root ganglia neurons and OL, UCB treatment prior to the onset of myelination decreased oligodendroglial differentiation and the number of myelinating OL, also observed when UCB was added after the onset of myelination. In both circumstances, UCB decreased the number of myelin internodes per OL, as well as the myelin internode length. Our studies demonstrate that increased concentrations of UCB compromise myelinogenesis, thereby elucidating a potential deleterious consequence of elevated UCB.  相似文献   

17.
The molecular requirements for human myelination are incompletely defined, and further study is needed to fully understand the cellular mechanisms involved during development and in demyelinating diseases. We have established a human co-culture model to study myelination. Our earlier observations showed that addition of human γ-carboxylated growth-arrest-specific protein 6 (Gas6) to human oligodendrocyte progenitor cell (OPC) cultures enhanced their survival and maturation. Therefore, we explored the effect of Gas6 in co-cultures of enriched OPCs plated on axons of human fetal dorsal root ganglia explant. Gas6 significantly enhanced the number of myelin basic protein-positive (MBP+) oligodendrocytes with membranous processes parallel with and ensheathing axons relative to co-cultures maintained in defined medium only for 14 days. Gas6 did not increase the overall number of MBP+ oligodendrocytes/culture; however, it significantly increased the length of MBP+ oligodendrocyte processes in contact with and wrapping axons. Multiple oligodendrocytes were in contact with a single axon, and several processes from one oligodendrocyte made contact with one or multiple axons. Electron microscopy supported confocal Z-series microscopy demonstrating axonal ensheathment by MBP+ oligodendrocyte membranous processes in Gas6-treated co-cultures. Contacts between the axonal and oligodendrocyte membranes were evident and multiple wraps of oligodendrocyte membrane around the axon were visible supporting a model system in which to study events in human myelination and aspects of non-compact myelin formation.  相似文献   

18.
G C Owens  R P Bunge 《Neuron》1991,7(4):565-575
To elucidate the role of myelin-associated glycoprotein (MAG) in the axon-Schwann cell interaction leading to myelination, neonatal rodent Schwann cells were infected in vitro with a recombinant retrovirus expressing MAG antisense RNA or MAG sense RNA. Stably infected Schwann cells and uninfected cells were then cocultured with purified sensory neurons under conditions permitting extensive myelination in vitro. A proportion of the Schwann cells infected with the MAG antisense virus did not myelinate axons and expressed lower levels of MAG than control myelinating Schwann cells, as measured by immunofluorescence. Electron microscopy revealed that the affected cells failed to segregate large axons and initiate a myelin spiral despite having formed a basal lamina, which normally triggers Schwann cell differentiation. Cells infected with the MAG sense virus formed normal compact myelin. These observations strongly suggest that MAG is the critical Schwann cell component induced by neuronal interaction that initiates peripheral myelination.  相似文献   

19.
Axonal regeneration and remyelination of peripheral motor neurons (MNs) are critical for restoring neuromuscular motor function after injury or peripheral neuropathy. We examined whether optogenetically mediated light stimulation (OMLS) could enhance the axon outgrowth and myelination of MNs using three-dimensional motor neuron–Schwann cell (MN–SC) coculture on a microfluidic biochip. The biochip was designed to allow SCs to interact with the axons of MNs, while preventing direct contact between SCs and the cell bodies of MNs. Following coculture with SCs on the microfluidic biochip, MNs were transfected with a light-sensitive channelrhodopsin gene. Transfected MNs subjected to repeated light stimulation (20 Hz, 1 hr) produced significantly longer axons than nontransfected MNs. OMLS of MNs greatly increased the number of myelin basic protein (MBP)-expressing SCs, promoting the initiation of myelination of MNs. Ultrastructurally, OMLS of MNs markedly enhanced the thickness of the compact myelin sheath around the MN axons such that the average thickness was closer to that of the theoretical estimates in vivo. Thus, the MN–SC coculture model on a microfluidic biochip augmented by OMLS of MNs is a feasible platform for studying the relationship of neuronal activity with regrowth and remyelination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号