首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of plant cysteine proteases on the midgut peritrophic membrane (PM) of a polyphagous herbivorous lepidopteran, Trichoplusia ni, was studied. Proteins in PMs isolated from T. ni larvae were confirmed to be highly resistant to the serine proteinases trypsin and chymotrypsin, but were susceptible to degradation by plant cysteine proteases, which is consistent with the known molecular and biochemical characteristics of the T. ni PM proteins. However, the PM proteins were not degraded by plant cysteine proteases in larvae or in the presence of larval midgut fluid in vitro. With further biochemical analysis, cysteine protease-inhibiting activity was identified in the midgut fluid of T. ni larvae. The cysteine protease-inhibiting activity was heat resistant and active in the tested pH range from 6.0 to 10.0, but could be suppressed by thiol reducing reagents or reduced by treatment with catalase. In addition to T. ni, cysteine protease-inhibiting activity was also identified from two other polyphagous Lepidoptera species, Helicoverpa zea and Heliothis virescens. In conclusion, results from this study uncovered that herbivorous insects may counteract the attack of plant cysteine proteases on the PM by inhibiting the potentially insecticidal cysteine proteases from plants in the digestive tract. However, the biochemical identity of the cysteine protease-inhibiting activity in midgut fluid has yet to be identified.  相似文献   

2.
Extracellular proteases were isolated from the cell-free culture supernatant of the oyster-pathogenic protozoan, Perkinsus marinus, by bacitracin–sepharose affinity chromatography. The purified protease fractions contained >75% of the protease activity initially loaded onto the column with very high specific activity that corresponded to 8–11-fold level of protease enrichment. The isolated proteases hydrolysed a variety of protein substrates including oyster plasma. All of the isolated P. marinus proteases belonged to the serine class of proteases. Inhibitor studies involving spectrophotometric assay and gelatin gel electrophoresis showed high levels of inhibition in the presence of the serine protease inhibitors PMSF, benzamidine and chymostatin, whereas inhibitors of cysteine, aspartic, and metalloproteases showed little or no inhibition. Spectrophotometric assays involving serine-specific peptide substrates further revealed that the isolated proteases belong to the class of chymotrypsin-like serine proteases. A 41.7 kDa monomeric, N-glycosylated, serine protease (designated Perkinsin) has been identified as the major P. marinus extracellular protease.  相似文献   

3.
Previously, a suppression subtractive hybridization library was constructed to identify differentially expressed genes in peel pitting of navel orange fruit and a cDNA fragment sharing high similarities to cysteine protease genes was identified. In this study, we cloned its full-length cDNA sequence, designated CsCP, using the Rapid amplification of cDNA ends approach. It consists of 1,409 nucleotides and its ORF encodes 361 amino acids predicted to have an N-terminal signal peptide. Phylogenetic analysis revealed that CsCP belonged to the aleurain group in papain family of cysteine proteases. According to quantitative RT-PCR, the expression of CsCP was enhanced during the development of postharvest peel pitting concomitant with senescence, although it was detectable in all tested tissues including root, leaf, flower and peel of fruit. RNA gel blot analysis showed that the CsCP expression was induced by hypoxia (3% O2), but repressed by anoxia (0% O2), wounding, ethylene and high temperature (40°C). Conclusively, the CsCP is a senescence-associated gene and up-regulated during the development of citrus postharvest peel pitting, which provides a basis to understand its role in citrus peel pitting.  相似文献   

4.
The presence of 11 genes encoding subtilisin-like serine proteases was demonstrated by cloning from the genome of alkaliphilic Bacillus sp. strain KSM-LD1. This strain exoproduces the oxidatively stable alkaline protease LD-1 (Saeki et al. Curr Microbiol, 47:337–340, 2003). Among the 11 genes, six genes encoding alkaline proteases (SA, SB, SC, SD, SE, and LD-1) were expressed in Bacillus hosts. However, the other five genes for subtilisin-like proteases (SF, SG, SH, SI, and SJ) were expressed in neither Bacillus hosts nor Escherichia coli. The deduced amino acid sequences of SA, SB, SC, SF, SG, SH, SI, and SJ showed similarity to those of other subtilisin-like proteases from Bacillus strains with only 38 to 86% identity. The deduced amino acid sequence of SD was completely identical to that of an oxidatively stable alkaline protease from Bacillus sp. strain SD521, and that of SE was almost identical to that of a high-molecular mass subtilisin from Bacillus sp. strain D-6 with 99.7% identity. There are four to nine subtilisin-like serine protease genes in the reported genomes of Bacillus strains. At least 11 genes for the enzymes present in the genome of Bacillus sp. strain KSM-LD1, and this is the greatest number identified to date.  相似文献   

5.
为发掘甘薯近缘野生种三裂叶薯(Ipomoea triloba)的NBS-LRR类抗病基因,从基因数据库中对三裂叶薯基因组序列进行了筛选、鉴定和分析。结果表明,从三裂叶薯的98 025个基因中,筛选到282个编码NBS-LRR类蛋白的基因,其中N型80个,NL型83个,CN型28个,CNL型57个,TN型10个,TNL型23个,RN型1个。三裂叶薯的16条染色体上均含有NBS-LRR家族基因,数量最多的染色体含有65个,最少的只有1个。三裂叶薯基因组共有55个基因簇,包含了63.5%的NBS-LRR家族基因。在NBS-LRR抗病基因家族中,CNL和TNL亚家族分别对应到7和11个保守结构域。这为三裂叶薯抗性资源的利用提供了科学参考。  相似文献   

6.
7.
Hemostasis is a tightly regulated process which maintains a fluid state of blood within the vasculature and provides thrombotic response upon tissue injury. Various scientific studies have implicated the role of plant latex proteases in hemostasis using in vitro experiments. However, in vivo models substantiate their role in hemostasis. Therefore, in the present study, the effect of plant latex thrombin-like proteases (PTLPs) on hemostasis was investigated systematically using mice tail bleeding as a preclinical model. In this direction, latex protease fractions (LPFs), which showed potent thrombin-like activity, were selected as they act directly on fibrinogen to form clot and quickly stop bleeding. Thrombin-like activity was exhibited mainly by cysteine proteases. Calotropis gigantea, Carica papaya, Jatropha curcas, Oxystelma esculentum, Tabernaemontana divaricata, and Vallaris solanacea LPFs and papain from C. papaya latex significantly reduced bleeding on a topical application in normal and aspirin administered mice. In addition, PTLPs accelerated the clotting of factor VIII deficient plasma, while, papain brought back the clotting time to normal levels acting like a bypassing agent. Further, papain failed to show activity in the presence of specific cysteine protease inhibitor iodoacetic acid; confirming protease role in all the activities exhibited. At the tested dose, PTLPs except C. gigantea did not show toxicity. Further, structural and sequence comparison between PTLPs and human thrombin revealed structural and sequence dissimilarity indicating their unique nature. The findings of the present study may open up a new avenue for considering PTLPs including papain in the treatment of bleeding wounds.  相似文献   

8.
Cysteine proteases of malaria parasites   总被引:13,自引:0,他引:13  
A number of cysteine proteases of malaria parasites have been described, and many more putative cysteine proteases are suggested by analysis of the Plasmodium falciparum genome sequence. Studies with protease inhibitors have suggested roles for cysteine proteases in hemoglobin hydrolysis, erythrocyte rupture, and erythrocyte invasion by erythrocytic malaria parasites. The best characterised Plasmodium cysteine proteases are the falcipains, a family of papain-family (clan CA) enzymes. Falcipain-2 and falcipain-3 are hemoglobinases that appear to hydrolyse host erythrocyte hemoglobin in the parasite food vacuole. This function was recently confirmed for falcipain-2, with the demonstration that disruption of the falcipain-2 gene led to a transient block in hemoglobin hydrolysis. A role for falcipain-1 in erythrocyte invasion was recently suggested, but disruption of the falcipain-1 gene did not alter parasite development. Other papain-family proteases predicted by the genome sequence include dipeptidyl peptidases, a calpain homolog, and serine-repeat antigens. The serine-repeat antigens have cysteine protease motifs, but in some the active site Cys is replaced by a Ser. One of these proteins, SERA-5, was recently shown to have serine protease activity. As SERA-5 and some other serine-repeat antigens localise to the parasitophorous vacuole in mature parasites, they may play a role in erythrocyte rupture. The P. falciparum genome sequence also predicts more distantly related (clan CD and CE) cysteine proteases, but biochemical characterisation of these proteins has not been done. New drugs for malaria are greatly needed, and cysteine proteases may provide useful new drug targets. Cysteine protease inhibitors have demonstrated potent antimalarial effects, and the optimisation and testing of falcipain inhibitor antimalarials is underway.  相似文献   

9.
The Arabidopsis thaliana genome has over 550 protease sequences representing all five catalytic types: serine, cysteine, aspartic acid, metallo and threonine (MEROPS peptidase database, http://merops.sanger.ac.uk/), which probably reflect a wide variety of as yet unidentified functions performed by plant proteases. Recent indications that the 26S proteasome, a T1 family-threonine protease, is a regulator of light and hormone responsive signal transduction highlight the potential of proteases to participate in many aspects of plant growth and development. Recent discoveries that proteases are required for stomatal distribution, embryo development and disease resistance point to wider roles for four additional multigene families that include some of the most frequently studied (yet poorly understood) plant proteases: the subtilisin-like, serine proteases (family S8), the papain-like, cysteine proteases (family C1A), the pepsin-like, aspartic proteases (family A1) and the plant matrixin, metalloproteases (family M10A). In this report, 54 subtilisin-like, 30 papain-like and 59 pepsin-like proteases from Arabidopsis, are compared with S8, C1A and A1 proteases known from other plant species at the functional, phylogenetic and gene structure levels. Examples of structural conservation between S8, C1A and A1 genes from rice, barley, tomato and soybean and those from Arabidopsis are noted, indicating that some common, essential plant protease roles were established before the divergence of monocots and eudicots. Numerous examples of tandem duplications of protease genes and evidence for a variety of restricted expression patterns suggest that a high degree of specialization exists among proteases within each family. We propose that comprehensive analysis of the functions of these genes in Arabidopsis will firmly establish serine, cysteine and aspartic proteases as regulators and effectors of a wide range of plant processes.  相似文献   

10.
Papain-like cysteine proteases are the most numerous family of the cysteine protease class. They are expressed throughout the animal and plant kingdoms as well as in viruses and bacteria. More recently, this protease family has drawn attention as a potential pharmaceutical drug target in diseases characterized by excessive extracellular matrix degradation such as in osteoporosis, arthritis, vascular diseases, and cancer. Moreover, papain-like cysteine proteases have been identified as critical components of the life cycle and invasive potential of various human and live stock pathogens as well as major allergens. Therefore, this protease class is rigorously studied and requires sufficient amounts of protease protein to analyze structure-activity relationships, their 3-D structures as well as to screen for and optimize potent and selective inhibitors. This review summarizes approaches to generate active papain-like cysteine proteases by heterologous expression in a variety of expression systems.  相似文献   

11.
In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii α-mannosidase and G. stearothermophilus α-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles.  相似文献   

12.
Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CLpro) and a papain-like protease (PLpro) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (19) and four coumarins (1013) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CLpro and PLpro) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CLpro and PLpro inhibitory activity with IC50 values of 11.4 and 1.2?µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CLpro, whereas noncompetitive inhibition was observed with the SARS-CoV PLpro.  相似文献   

13.
Clitocypin and macrocypin are cysteine protease inhibitors of the mycocypin family which is unique to basidiomycetes. We have established that Clitocybe nebularis and Macrolepiota procera each contain genes for both macrocypin and clitocypin. Both are expressed in M. procera but only clitocypin in C. nebularis. Further analysis of mycocypin expression at the mRNA and protein levels in mature fruiting bodies of M. procera revealed that clitocypin is expressed evenly throughout the fruiting body, while the level of expression of macrocypins varies, and, at the protein level, is much higher in the veil fragments and the ring. The expression patterns of various mycocypins were determined in Coprinopsis cinerea, using promoters linked to a reporter gene. The expression profile of the clitocypin promoter was similar to that of the constitutive promoter gpdII from Agaricus bisporus, while that of the macrocypin 4 promoter was limited to the outer edges of the fruiting body throughout development. In addition, the activity of the macrocypin 3 promoter was different, indicating different regulation of expression for different macrocypin genes. The complex, tissue specific expression patterns for mycocypin genes suggest different biological roles for the products, either in regulation of endogenous proteases or in defense against pathogens or predators.  相似文献   

14.
The barley cysteine proteinase B (EPB) is the main protease responsible for the degradation of endosperm storage proteins providing nitrogenous nutrients to support the growth of young seedlings. The expression of this enzyme is induced in the germinating seeds by the phytohormone, gibberellin, and suppressed by another phytohormone, abscisic acid. In situ hybridization experiments indicate that EPB is expressed in the scutellar epithelium within 24 h of seed germination, but the aleurone tissue surrounding the starchy endosperm eventually becomes the main tissue expressing this enzyme. The EPB gene family of barley consists of two very similar genes, EPB1 and EPB2, both of which have been mapped to chromosome 3. The sequences of EPB1 and EPB2 match with the two previously published cDNA clones indicating that both genes are expressed. Interestingly, neither of these genes contain any introns, a rare phenomenon in which all members of a small gene family are active intronless genes. Sequence comparison indicates that the barley EPB family can be classified as cathepsin L-like endopeptidases and is most closely related to two legume cysteine proteinases (Phaseolus vulgaris EP-C1 and Vigna mungo SHEP) which are also involved in seed storage protein degradation. The promoters of EPB1 and EPB2 have been linked to the coding sequence of a reporter gene, GUS, encoding -glucuronidase, and introduced into barley aleurone cells using the particle bombardment method. Transient expression studies indicate that EPB promoters are sufficient to confer the hormonal regulation of these genes.  相似文献   

15.
Developmental and tissue homeostasis is a delicate balance between cell proliferation and cell death. The activation of caspases, a conserved family of cysteine proteases, is a main event in the initiation and execution of programmed cell death. While caspases have been characterized from many organisms, comparatively little is known about insect caspases. In Drosophila melanogaster, seven caspases have been characterized; three initiators and four effectors. In mosquitoes, several putative caspases have been identified in the genomes of Aedes aegypti and Anopheles gambiae. A small number of caspases have been identified in the Lepidoptera, the flour beetle, Tribolium castaneum, and the pea aphid, Acyrthosiphon pisum. The availability of new insect genome sequences will provide a unique opportunity to examine the caspase family across an evolutionarily diverse phylum and will provide valuable insights into their function and regulation.  相似文献   

16.
Proteolytic enzymes, particularly secreted proteases of fungal origin, are among the most important of industrial enzymes, yet the biochemical properties and substrate specificities of these proteins have been difficult to characterize. Genomic sequencing offers a powerful tool to identify potentially novel proteases. The genome of the model basidiomycete Coprinopsis cinereus was found to have an unusually high number of metalloproteases that closely match the M36 peptidase family known as fungalysins. The eight predicted C. cinereus fungalysins divide into two groups upon comparison with fungalysins from other fungi. One member, CcMEP1, is most similar to the single representative fungalysins from the basidiomycetes Phanerochaete chrysosporium, Cryptococcus neoformans, and Ustilago maydis, and to the fungalysin type-protein from Aspergillus fumigatus. The remaining seven C. cinereus predicted fungalysins form a group with similarity to three predicted M36 peptidases of Laccaria bicolor. All eight of the C. cinereus enzymes contain both the signature M36 Pfam domain and the FTP propeptide domain. All contain large propeptides with considerable sequence conservation near a proposed cleavage site. The predicted mature enzymes range in size from 37–46 kDa and have isoelectric points that are mildly acidic to neutral. The proximity of these genes to telomeres and/or to transposable elements may have contributed to the expansion of this gene family in C. cinereus.  相似文献   

17.
We have previously identified and characterized two amastigote-specific cysteine proteinases of Leishmania pifanoi. The slightly different isoforms of the more abundant proteinase are coded by a gene family of approximately 20 gene copies, that contain a C-terminal extension characteristic of cysteine proteinases of trypanosomatids. In this gene family, we have detected a copy that codes for a truncated form of this proteinase, lacking the C-terminal extension. Interestingly, when the deletion of a nucleotide that creates a stop codon causing this truncation is disregarded, the translated sequence gives rise to a divergent C-terminal extension that has many conserved amino acids when compared to Leishmania and Trypanosome, suggesting that a recent mutation led to the truncation.  相似文献   

18.
There is limited information on the biology and pathogenesis of Leishmania aethiopica, causative agent of cutaneous leishmaniasis (CL) in Ethiopia. In this study we have identified and characterized two cathepsin L-like cysteine protease genes, Laecpa and Laecpb, from L. aethiopica. The predicted amino acid sequence of Laecpa and Laecpb is more than 75% identical with homologous cathepsin L-like cysteine protease genes of other Leishmania species and less than 50% identical with human cathepsin L. Laecpa is expressed predominantly in the stationary, and to a lower level, during the amastigote stage while Laecpb is specifically expressed in the stationary stage of L. aethiopica development. Phylogenetic analysis showed that the two genes are grouped into separate clades which are the result of gene duplication. The isolation of these genes will be useful in developing Leishmania species specific diagnostics for molecular epidemiological studies and serves as a first step to study the role of cysteine proteases in L. aethiopica pathogenesis.  相似文献   

19.
In the search for anti-SARS-CoV, tanshinones derived from Salvia miltiorrhiza were found to be specific and selective inhibitors for the SARS-CoV 3CLpro and PLpro, viral cysteine proteases. A literature search for studies involving the seven isolated tanshinone hits showed that at present, none have been identified as coronaviral protease inhibitors. We have identified that all of the isolated tanshinones are good inhibitors of both cysteine proteases. However, their activity was slightly affected by subtle changes in structure and targeting enzymes. All isolated compounds (17) act as time dependent inhibitors of PLpro, but no improved inhibition was observed following preincubation with the 3CLpro. In a detail kinetic mechanism study, all of the tanshinones except rosmariquinone (7) were identified as noncompetitive enzyme isomerization inhibitors. However, rosmariquinone (7) showed a different kinetic mechanism through mixed-type simple reversible slow-binding inhibition. Furthermore, tanshinone I (5) exhibited the most potent nanomolar level inhibitory activity toward deubiquitinating (IC50 = 0.7 μM). Additionally, the inhibition is selective because these compounds do not exert significant inhibitory effects against other proteases including chymotrysin, papain, and HIV protease. These findings provide potential inhibitors for SARS-CoV viral infection and replication.  相似文献   

20.
Asclepain f is a papain-like protease previously isolated and characterized from latex of Asclepias fruticosa. This enzyme is a member of the C1 family of cysteine proteases that are synthesized as preproenzymes. The enzyme belongs to the alpha + beta class of proteins, with two disulfide bridges (Cys22-Cys63 and Cys56-Cys95) in the alpha domain, and another one (Cys150-Cys201) in the beta domain, as was determined by molecular modeling. A full-length 1,152 bp cDNA was cloned by RT-RACE-PCR from latex mRNA. The sequence was predicted as an open reading frame of 340 amino acid residues, of which 16 residues belong to the signal peptide, 113 to the propeptide and 211 to the mature enzyme. The full-length cDNA was ligated to pPICZα vector and expressed in Pichia pastoris. Recombinant asclepain f showed endopeptidase activity on pGlu-Phe-Leu-p-nitroanilide and was identified by PMF-MALDI-TOF MS. Asclepain f is the first peptidase cloned and expressed from mRNA isolated from plant latex, confirming the presence of the preprocysteine peptidase in the latex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号