首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
West Nile virus (WNV) is a re-emerging pathogen responsible for outbreaks of fatal meningoencephalitis in humans. Previous studies have suggested a protective role for monocytes in a mouse model of WNV infection, but the molecular mechanisms have remained unclear. In this study, we show that genetic deficiency in Ccr2, a chemokine receptor on Ly6c(hi) inflammatory monocytes and other leukocyte subtypes, markedly increases mortality due to WNV encephalitis in C57BL/6 mice; this was associated with a large and selective reduction of Ly6c(hi) monocyte accumulation in the brain. WNV infection in Ccr2(+/+) mice induced a strong and highly selective monocytosis in peripheral blood that was absent in Ccr2(-/-) mice, which in contrast showed sustained monocytopenia. When a 1:1 mixture of Ccr2(+/+) and Ccr2(-/-) donor monocytes was transferred by vein into WNV-infected Ccr2(-/-) recipient mice, monocyte accumulation in the CNS was not skewed toward either component of the mixture, indicating that Ccr2 is not required for trafficking of monocytes from blood to brain. We conclude that Ccr2 mediates highly selective peripheral blood monocytosis during WNV infection of mice and that this is critical for accumulation of monocytes in the brain.  相似文献   

2.
The Th17 cytokine, IL-22, regulates host immune responses to extracellular pathogens. Whether IL-22 plays a role in viral infection, however, is poorly understood. We report here that Il22(-/-) mice were more resistant to lethal West Nile virus (WNV) encephalitis, but had similar viral loads in the periphery compared to wild type (WT) mice. Viral loads, leukocyte infiltrates, proinflammatory cytokines and apoptotic cells in the central nervous system (CNS) of Il22(-/-) mice were also strikingly reduced. Further examination showed that Cxcr2, a chemokine receptor that plays a non-redundant role in mediating neutrophil migration, was significantly reduced in Il22(-/-) compared to WT leukocytes. Expression of Cxcr2 ligands, cxcl1 and cxcl5, was lower in Il22(-/-) brains than wild type mice. Correspondingly, neutrophil migration from the blood into the brain was attenuated following lethal WNV infection of Il22(-/-) mice. Our results suggest that IL-22 signaling exacerbates lethal WNV encephalitis likely by promoting WNV neuroinvasion.  相似文献   

3.
We examined gene expression levels of multiple chemokines and chemokine receptors during Pneumocystis murina infection in wild-type and immunosuppressed mice, using microarrays and qPCR. In wild-type mice, expression of chemokines that are ligands for Ccr2, Cxcr3, Cxcr6, and Cxcr2 increased at days 32–41 post-infection, with a return to baseline by day 75–150. Concomitant increases were seen in Ccr2, Cxcr3, and Cxcr6, but not in Cxcr2 expression. Induction of these same factors also occurred in CD40-ligand and CD40 knockout mice but only at a much later time-point, during uncontrolled Pneumocystis pneumonia (PCP). Expression of CD4 Th1 markers was increased in wild-type mice during clearance of infection. Ccr2 and Cx3cr1 knockout mice cleared Pneumocystis infection with kinetics similar to wild-type mice, and all animals developed anti-Pneumocystis antibodies. Upregulation of Ccr2, Cxcr3, and Cxcr6 and their ligands supports an important role for T helper cells and mononuclear phagocytes in the clearance of Pneumocystis infection. However, based on the current and prior studies, no single chemokine receptor appears to be critical to the clearance of Pneumocystis.  相似文献   

4.
The chemokine Cxcl12 binds Cxcr4 and Cxcr7 receptors to control cell migration in multiple biological contexts, including brain development, leukocyte trafficking, and tumorigenesis. Both receptors are expressed in the CNS, but how they cooperate during migration has not been elucidated. Here, we used the migration of cortical interneurons as a model to study this process. We found that Cxcr4 and Cxcr7 are coexpressed in migrating interneurons, and that Cxcr7 is essential for chemokine signaling. Intriguingly, this process does not exclusively involve Cxcr7, but most critically the modulation of Cxcr4 function. Thus, Cxcr7 is necessary to regulate Cxcr4 protein levels, thereby adapting chemokine responsiveness in migrating cells. This demonstrates that a chemokine receptor modulates the function of another chemokine receptor by controlling the amount of protein that is made available for signaling at the cell surface.  相似文献   

5.
The recruitment of leukocytes to infectious foci depends strongly on the local release of chemoattractant mediators. The human CXC chemokine receptor 3 (CXCR3) is an important node in the chemokine signaling network and is expressed by multiple leukocyte lineages, including T cells and macrophages. The ligands of this receptor originate from an ancestral CXCL11 gene in early vertebrates. Here, we used the optically accessible zebrafish embryo model to explore the function of the CXCR3-CXCL11 axis in macrophage recruitment and show that disruption of this axis increases the resistance to mycobacterial infection. In a mutant of the zebrafish ortholog of CXCR3 (cxcr3.2), macrophage chemotaxis to bacterial infections was attenuated, although migration to infection-independent stimuli was unaffected. Additionally, attenuation of macrophage recruitment to infection could be mimicked by treatment with NBI74330, a high-affinity antagonist of CXCR3. We identified two infection-inducible CXCL11-like chemokines as the functional ligands of Cxcr3.2, showing that the recombinant proteins exerted a Cxcr3.2-dependent chemoattraction when locally administrated in vivo. During infection of zebrafish embryos with Mycobacterium marinum, a well-established model for tuberculosis, we found that Cxcr3.2 deficiency limited the macrophage-mediated dissemination of mycobacteria. Furthermore, the loss of Cxcr3.2 function attenuated the formation of granulomatous lesions, the typical histopathological features of tuberculosis, and led to a reduction in the total bacterial burden. Prevention of mycobacterial dissemination by targeting the CXCR3 pathway, therefore, might represent a host-directed therapeutic strategy for treatment of tuberculosis. The demonstration of a conserved CXCR3-CXCL11 signaling axis in zebrafish extends the translational applicability of this model for studying diseases involving the innate immune system.KEY WORDS: Macrophage biology, Tuberculosis, Chemokine, CXCR3, CXCL11, Mycobacterium, Zebrafish, Immunology  相似文献   

6.
The cytokine macrophage migration inhibitory factor (MIF) plays a critical role in inflammatory diseases and atherogenesis. We identify the chemokine receptors CXCR2 and CXCR4 as functional receptors for MIF. MIF triggered G(alphai)- and integrin-dependent arrest and chemotaxis of monocytes and T cells, rapid integrin activation and calcium influx through CXCR2 or CXCR4. MIF competed with cognate ligands for CXCR4 and CXCR2 binding, and directly bound to CXCR2. CXCR2 and CD74 formed a receptor complex, and monocyte arrest elicited by MIF in inflamed or atherosclerotic arteries involved both CXCR2 and CD74. In vivo, Mif deficiency impaired monocyte adhesion to the arterial wall in atherosclerosis-prone mice, and MIF-induced leukocyte recruitment required Il8rb (which encodes Cxcr2). Blockade of Mif but not of canonical ligands of Cxcr2 or Cxcr4 in mice with advanced atherosclerosis led to plaque regression and reduced monocyte and T-cell content in plaques. By activating both CXCR2 and CXCR4, MIF displays chemokine-like functions and acts as a major regulator of inflammatory cell recruitment and atherogenesis. Targeting MIF in individuals with manifest atherosclerosis can potentially be used to treat this condition.  相似文献   

7.
Numerous studies have divided blood monocytes according to their expression of the surface markers CD14 and CD16 into following subsets: classical CD14++CD16, intermediate CD14++CD16+ and nonclassical CD14+CD16++ monocytes. These subsets differ in phenotype and function and are further correlated to cardiovascular disease, inflammation and cancer. However, the CD14/CD16 nature of resident monocytes in human bone marrow remains largely unknown. In the present study, we identified a major population of CD14++CD16+ monocytes by using cryopreserved bone marrow mononuclear cells from healthy donors. These cells express essential monocyte-related antigens and chemokine receptors such as CD11a, CD18, CD44, HLA-DR, Ccr2, Ccr5, Cx3cr1, Cxcr2 and Cxcr4. Notably, the expression of Ccr2 was inducible during culture. Furthermore, sorted CD14++CD16+ bone marrow cells show typical macrophage morphology, phagocytic activity, angiogenic features and generation of intracellular oxygen species. Side-by-side comparison of the chemokine receptor profile with unpaired blood samples also demonstrated that these rather premature medullar monocytes mainly match the phenotype of intermediate and partially of (non)classical monocytes. Together, human monocytes obviously acquire their definitive CD14/CD16 signature in the bloodstream and the medullar monocytes probably transform into CD14++CD16 and CD14+CD16++ subsets which appear enriched in the periphery.  相似文献   

8.
Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in ~≥88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.  相似文献   

9.
Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.  相似文献   

10.
Fibrosis is a common outcome of chronic inflammation or injury. Pulmonary fibrosis may be the result of abnormal repair after an acute inflammatory response. The process of repair initiated by a tissue insult is largely a function of the activation of cells to produce important biological mediators such as cytokines, growth factors and chemokines, which orchestrate most aspects of the inflammatory response. Consequently, altered regulation of the production of inflammatory cell cytokines and chemokines after injury and repair likely contributes to the fibrosis. Our hypothesis is that chronic expression of specific chemokine and chemokine receptors during the fibrotic phase induced by thoracic irradiation may perpetuate the recruitment and activation of lymphocytes and macrophages, which may contribute to the development of fibrosis. Fibrosis-sensitive (C57BL/6) and fibrosis-resistant (C3H/HeJ) mice were irradiated with a single dose of 12.5 Gy to the thorax. Total lung RNA was prepared and hybridized using microarray analysis and RNase protection assays. At 26 weeks postirradiation, messages encoding the chemokines BLC (now known as Scyb13), C10 (now known as Scya6), IP-10 (now known as Scyb10), MCP-1 (now known as Scya2), MCP-3 (now known as Scya7), MIP-1gamma (now known as Scya9), and RANTES (now known as Scya5) and the chemokine receptors Ccr1, Ccr2, Ccr5 and Ccr6 were elevated in fibrosis-sensitive (C57BL/6) mice. In contrast, only the messages encoding SDF-1alpha (now known as Sdf1) and Ccr1 were elevated 26 weeks postirradiation in fibrosis-resistant (C3H/HeJ) mice. Our results point to the CC and CCR family members as the predominant chemokine responders during the development of fibrosis. These studies suggest that monocyte/macrophage and lymphocyte recruitment and activation are key components of radiation-induced fibrosis.  相似文献   

11.
Chemokine-chemokine receptor interactions and the subsequent recruitment of T lymphocytes to the graft are believed to be among the initial events in the development of acute and chronic rejection of heart transplants. We sought to determine the role of chemokine receptor Cxcr3 on the development of acute and chronic rejection in a multiple minor Ag mismatched mouse heart transplant model. The frequencies and kinetics of immunodominant H60 (LTFNYRNL) miHA-specific CD8 T cells in wild-type or Cxcr3-/- C57BL/6 recipients were monitored using MHC class I tetramer after BALB/b donor hearts were transplanted. Acceptance of grafts, severity of rejection, and infiltration of T cells were not altered in Cxcr3-/- recipients. However, graft survival was moderately prolonged in Cxcr3-/- recipient mice undergoing acute rejection. Analyses of splenocytes, PBLs, and graft-infiltrating cells revealed increased alloreactive T cells (H60-specific CD8 T cells) in the peripheral blood and spleen but not in the graft. Adoptively transferred Cxcr3-/- CD8 T cells in the BALB/b heart-bearing B6 scid mice showed retention of alloreactive CD8 T cells in the blood but less infiltration into the graft. Cxcr3-/- recipients with long-term graft survival also showed a marked decrease of CD8+ T cell infiltration and reduced neo-intimal hyperplasia. These data indicate that Cxcr3 plays a critical role in the trafficking as well as activation of alloreactive T cells. This role is most eminent in a transplant model when a less complex inflammatory milieu is involved such as a well-matched graft and chronic rejection.  相似文献   

12.
Immune system impairment and increased susceptibility to infection among alcohol abusers is a significant but not well-understood problem. We hypothesized that acute ethanol administration would inhibit leukocyte recruitment and endothelial cell activation during inflammation and infection. Using LPS and carrageenan air pouch models in mice, we found that physiological concentrations of ethanol (1-5 g/kg) significantly blocked leukocyte recruitment (50-90%). Because endothelial cell activation and immune cell-endothelial cell interactions are critical regulators of leukocyte recruitment, we analyzed the effect of acute ethanol exposure on endothelial cell activation in vivo using the localized Shwartzman reaction model. In this model, ethanol markedly suppressed leukocyte accumulation and endothelial cell adhesion molecule expression in a dose-dependent manner. Finally, we examined the direct effects of ethanol on endothelial cell activation and leukocyte-endothelial cell interactions in vitro. Ethanol, at concentrations within the range found in human blood after acute exposure and below the levels that induce cytotoxicity (0.1-0.5%), did not induce endothelial cell activation, but significantly inhibited TNF-mediated endothelial cell activation, as measured by adhesion molecule (E-selectin, ICAM-1, VCAM-1) expression and chemokine (IL-8, MCP-1, RANTES) production and leukocyte adhesion in vitro. Studies exploring the potential mechanism by which ethanol suppresses endothelial cell activation revealed that ethanol blocked NF-kappaB nuclear entry in an IkappaBalpha-dependent manner. These findings support the hypothesis that acute ethanol overexposure may increase the risk of infection and inhibit the host inflammatory response, in part, by blocking endothelial cell activation and subsequent immune cell-endothelial cell interactions required for efficient immune cell recruitment.  相似文献   

13.
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.  相似文献   

14.
Although G-CSF has been shown to increase neutrophil (polymorphonuclear leukocyte, PMN) recruitment into the lung during pulmonary infection, relatively little is known about the local chemokine profiles associated with this enhanced PMN delivery. We investigated the effects of G-CSF and PMN recruitment on the pulmonary chemokine response to intratracheal LPS. Rats pretreated twice daily for 2 days with an s.c. injection of G-CSF (50 microg/kg) were sacrificed at either 90 min or 4 h after intratracheal LPS (100 microg) challenge. Pulmonary recruitment of PMNs was not observed at 90 min post LPS challenge. Macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC) concentrations in bronchoalveolar lavage (BAL) fluid were similar in animals pretreated with or without G-CSF at this time. G-CSF pretreatment enhanced pulmonary recruitment of PMNs (5-fold) and greatly reduced MIP-2 and CINC levels in BAL fluid at 4 h after LPS challenge. In vitro, the presence of MIP-2 and CINC after LPS stimulation of alveolar macrophages was decreased by coculturing with circulating PMNs but not G-CSF. G-CSF had no direct effect on LPS-induced MIP-2 and CINC mRNA expression by alveolar macrophages. Pulmonary recruited PMNs showed a significant increase in cell-associated MIP-2 and CINC. Cell-associated MIP-2 and CINC of circulating PMNs were markedly increased after exposure of these cells to the BAL fluid of LPS-challenged lungs. These data suggest that recruited PMNs are important cells in modulating the local chemokine response. G-CSF augments PMN recruitment and, thereby, lowers local chemokine levels, which may be one mechanism resulting in the subsidence of the host proinflammatory response.  相似文献   

15.
Lipocalin 2 (Lcn2) is a bacteriostatic factor produced during the innate immune response to bacterial infection. Whether Lcn2 has a function in viral infection is unknown. We investigated the regulation and function of Lcn2 in the central nervous system (CNS) of mice during West Nile virus (WNV) encephalitis. Lcn2 mRNA and protein were induced in the brain by day 5, and this induction increased further by day 7 postinfection but was delayed compared with the induction of the toll-like receptor 3 (TLR3) gene, retinoic acid-inducible gene 1 (RIG-I), and melanoma differentiation-associated protein 5 (MDA5) gene. The Lcn2 mRNA and protein were both found at high levels in the choroid plexus, vascular endothelium, macrophage/microglia, and astrocytes. However, some neuronal subsets contained Lcn2 protein but no detectable mRNA. In Lcn2 knockout (KO) mice, with the exception of CXC motif chemokine 5 (CXCL5), which was significantly more downregulated than in wild-type (WT) mice, expression levels of a number of other host response genes were similar in the two genotypes. The brain from Lcn2 and WT mice with WNV encephalitis contained similar numbers of infiltrating macrophages, granulocytes, and T cells. Lcn2 KO and WT mice had no significant difference in tissue viral loads or survival after infection with different doses of WNV. We conclude that Lcn2 gene expression is induced to high levels in a time-dependent fashion in a variety of cells and regions of the CNS of mice with WNV encephalitis. The function of Lcn2 in the host response to WNV infection remains largely unknown, but our data indicate that it is dispensable as an antiviral or immunoregulatory factor in WNV encephalitis.  相似文献   

16.
Regional differences in inflammation during viral infections of the CNS suggest viruses differentially induce patterns of chemoattractant expression, depending on their cellular targets. Previous studies have shown that expression of the chemokine CXCL10 by West Nile virus (WNV)-infected neurons is essential for the recruitment of CD8 T cells for the purpose of viral clearance within the CNS. In the current study we used mice deficient for the CXCL10 receptor, CXCR3, to evaluate its role in leukocyte-mediated viral clearance of WNV infection within various CNS compartments. WNV-infected CXCR3-deficient mice exhibited significantly enhanced mortality compared with wild-type controls. Immunologic and virologic analyses revealed that CXCR3 was dispensable for control of viral infection in the periphery and in most CNS compartments but, surprisingly, was required for CD8 T cell-mediated antiviral responses specifically within the cerebellum. WNV-specific, CXCR3-expressing T cells preferentially migrated into the cerebellum, and WNV-infected cerebellar granule cell neurons expressed higher levels of CXCL10 compared with similarly infected cortical neurons. These results indicate that WNV differentially induces CXCL10 within neuronal populations and suggest a novel model for nonredundancy in chemokine-mediated inflammation among CNS compartments.  相似文献   

17.
Recently, we identified that regulation of leukocyte recruitment by IL-6 requires shedding of the IL-6R from infiltrating neutrophils. In this study, experiments have examined whether other IL-6-related cytokines possess similar properties. Levels of oncostatin M (OSM) and leukemia inhibitory factor were analyzed in patients with overt bacterial peritonitis during the first 5 days of infection. Although no change in leukemia inhibitory factor was observed throughout the duration of infection, OSM was significantly elevated on day 1 and rapidly returned to baseline by days 2-3. The source of OSM was identified as the infiltrating neutrophils, and OSM levels correlated both with leukocyte numbers and i.p. soluble IL-6R (sIL-6R) levels. FACS analysis revealed that OSM receptor beta expression was restricted to human peritoneal mesothelial cells. Stimulation of human peritoneal mesothelial cells with OSM induced phosphorylation of gp130 and OSM receptor beta, which was accompanied by activation of STAT3 and secretion of CC chemokine ligand 2/monocyte chemoattractant protein-1 and IL-6. Although OSM itself did not modulate CXC chemokine ligand 8/IL-8 release, it effectively suppressed IL-1beta-mediated expression of this neutrophil-activating CXC chemokine. Moreover, OSM synergistically blocked IL-1beta-induced CXC chemokine ligand 8 secretion in combination with the IL-6/sIL-6R complex. Thus suggesting that OSM and sIL-6R release from infiltrating neutrophils may contribute to the temporal switch between neutrophil influx and mononuclear cell recruitment seen during acute inflammation.  相似文献   

18.
West Nile virus (WNV) infects thousands of humans annually and causes a spectrum of disease ranging from an acute febrile illness to lethal encephalitis. A new study suggests a link between CCR5Delta32 (a common mutant allele of the chemokine and HIV receptor CCR5) and fatal WNV infection. The study highlights a possible risk in targeting this receptor for the prevention and/or treatment of infectious diseases.  相似文献   

19.
Chemokines are a class of inflammatory mediators which main function is to direct leukocyte migration through the binding to G protein-coupled receptors (GPCRs). In addition to these functional, signal-transducing chemokine receptors other types of receptors belonging to the chemokine GPCR family were identified. They are called atypical or decoy chemokine receptors because they bind and degrade chemokines but do not transduce signals or activate cell migration. Here there is the summary of two recent papers that identified other nonchemotactic chemokine receptors: the Duffy antigen receptor for chemokines (DARC) that mediates trancytosis of chemokines from tissue to vascular lumen promoting chemokine-mediated leukocyte transmigration and chemokine (CC motif) receptor-like 2 (CCRL2) that neither internalizes its ligands nor transduces signals but presents bound ligands to functional signaling receptors improving their activity. Collectively these nonchemotactic chemokine receptors do not directly induce cell migration, but appear nonetheless to play a nonredundant role in leukocyte recruitment by shaping the chemoattractant gradient, either by removing, transporting or concentrating their cognate ligands.Key words: Chemokine, chemokine receptor, leukocyte recruitment, chemotaxis, transcytosis  相似文献   

20.
Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号