首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2014,16(12):1656-1665
Background aimsAdipocytes are metabolically active cells and have endocrine functions, such as cytokine secretion. Notably, adipocytes are found underneath skin and are thought to be involved in the body's response to ischemia-reperfusion (I-R). I-R injury is an important factor in the pathogenesis of chronic skin wounds. In this study, we investigated the response of human adipocytes to hypoxia-reoxygenation (H-R), the in vitro equivalent of I-R.MethodsWe cultured human mature adipocytes by enclosing them in hydrogel composed of hyaluronan and collagen and analyzed their proliferation and response to H-R.ResultsThe average diameter of mature adipocytes isolated from abdominal subcutaneous fat tissue was between 60 and 109 μm, and a positive correlation was found between adipocyte size and body mass index. Hydrogel-enclosed human adipocytes displayed viability in in vitro culture and were capable of expressing foreign genes for at least 1 month. Proliferation analysis revealed 5-bromo-2′-deoxy-uridine labeling and positive Ki67 signaling. vascular endothelial growth factor expression was differentially altered in adipocytes in response to hypoxia and H-R. Adipocyte messenger RNA expression of pro-inflammatory cytokines, such as interleukin-1, interleukin-8 and tumor necrosis factor-α, was upregulated in response to H-R. In addition, the expression of heat shock protein 70, a cytoprotective gene, and inducible nitric oxide synthase, a proapoptotic gene, were both increased in H-R. Survival of hydrogel-enclosed adipocytes was found at 2 months after delivery into athymic mice.ConclusionsThese and previous results from our group show that mature adipocytes can be cultured in vitro within a matrix and that they are functionally active cells that respond to environmental changes.  相似文献   

2.
This study used a murine model of type 2 diabetes (BKS.Cg-Dock7(m) +/+Lepr(db)/J mice) to investigate the inflammatory and cellular mechanisms predisposing to Burkholderia pseudomallei infection and co-morbid diabetes. Homozygous db/db (diabetic) mice developed extreme obesity, dyslipidaemia and glucose intolerance leading to hyperglycaemia and overt type 2 diabetes. Compared to their heterozygous db/+ (non-diabetic) littermates, diabetic mice rapidly succumbed to subcutaneous B. pseudomallei infection, paralleled by severe hypoglycaemia and increased expression of the proinflammatory cytokines, tumour necrosis factor (TNF)-α and interleukin (IL)-1β, in the spleen, despite comparable bacterial loads in the spleen of non-diabetic mice. Neutrophil oxidative burst and dendritic cell uptake and killing of B. pseudomallei were similar between diabetic and non-diabetic mice. Compared to peritoneal macrophages from non-diabetic mice, macrophages from diabetic mice were unable to contain and kill B. pseudomallei. Functional differences between macrophages of diabetic and non-diabetic mice toward B. pseudomallei may contribute to rapid dissemination and more severe disease progression in hosts with co-morbid type 2 diabetes.  相似文献   

3.
Endothelial dysfunction comprises a number of functional alterations in the vascular endothelium that are associated with diabetes and cardiovascular disease, including changes in vasoregulation, enhanced generation of reactive oxygen intermediates, inflammatory activation, and altered barrier function. Hyperglycemia is a characteristic feature of type 1 and type 2 diabetes and plays a pivotal role in diabetes-associated microvascular complications. Although hyperglycemia also contributes to the occurrence and progression of macrovascular disease (the major cause of death in type 2 diabetes), other factors such as dyslipidemia, hyperinsulinemia, and adipose-tissue-derived factors play a more dominant role. A mutual interaction between these factors and endothelial dysfunction occurs during the progression of the disease. We pay special attention to the possible involvement of endoplasmic reticulum stress (ER stress) and the role of obesity and adipose-derived adipokines as contributors to endothelial dysfunction in type 2 diabetes. The close interaction of adipocytes of perivascular adipose tissue with arteries and arterioles facilitates the exposure of their endothelial cells to adipokines, particularly if inflammation activates the adipose tissue and thus affects vasoregulation and capillary recruitment in skeletal muscle. Hence, an initial dysfunction of endothelial cells underlies metabolic and vascular alterations that contribute to the development of type 2 diabetes. E.C. Eringa is supported by the Dutch Diabetes Foundation (grant 2003.00.030), the Dutch Kidney foundation (grant C03.2046), and the Dutch organization for scientific research (grant 916.76.179). V.W.M. van Hinsbergh is supported by the European Vascular Genomics Network (grant LSHM-CT-2003–503254).  相似文献   

4.
Accumulation of visceral fat is a key phenomenon in the onset of obesity-associated metabolic disorders. Macrophage infiltration induces chronic mild inflammation widely considered as a causative factor for insulin resistance and eventually diabetes. We previously showed that >90% of macrophages infiltrating the adipose tissue of obese animals and humans are arranged around dead adipocytes, forming characteristic crown-like structures (CLS). In this study we quantified CLS in visceral and subcutaneous depots from two strains of genetically obese mice, db/db and ob/ob. In both strains, CLS were prevalent in visceral compared with subcutaneous fat. Adipocyte size and CLS density exhibited a positive correlation both in visceral and in subcutaneous depots; however, the finding that adipocyte size was smallest and CLS density highest in visceral fat suggests a different susceptibility of visceral and subcutaneous adipocytes to death. Visceral fat CLS density was 3.4-fold greater in db/db than in ob/ob animals, which at the age at which our experimental strain was used are more prone to glucose metabolic disorders.  相似文献   

5.
Rosiglitazone is a PPARγ agonist commonly used to treat diabetes. In addition to improving insulin sensitivity, rosiglitazone restores normal vascular function by a mechanism that remains poorly understood. Here we show that adiponectin is required to mediate the PPARγ effect on vascular endothelium of diabetic mice. In db/db and diet-induced obese mice, PPARγ activation by rosiglitazone restores endothelium-dependent relaxation of aortae, whereas diabetic mice lacking adiponectin or treated with an anti-adiponectin antibody do not respond. Rosiglitazone stimulates adiponectin release from fat explants, and subcutaneous fat transplantation from rosiglitazone-treated mice recapitulates vasodilatation in untreated db/db recipients. Mechanistically, adiponectin activates AMPK/eNOS and cAMP/PKA signaling pathways in aortae, which increase NO bioavailability and reduce oxidative stress. Taken together, these results demonstrate that adipocyte-derived adiponectin is required for PPARγ-mediated improvement of endothelial function in diabetes. Thus, the adipose tissue represents a promising target for treating diabetic vasculopathy.  相似文献   

6.
7.
Low plasma levels of adiponectin (hypoadiponectinemia) and elevated circulating concentrations of plasminogen activator inhibitor (PAI)-1 are causally associated with obesity-related insulin resistance and cardiovascular disease. However, the mechanism that mediates the aberrant production of these two adipokines in obesity remains poorly understood. In this study, we investigated the effects of hypoxia and reactive oxygen species (ROS) on production of adiponectin and PAI-1 in 3T3-L1 adipocytes. Quantitative PCR and immunoassays showed that ambient hypoxia markedly suppressed adiponectin mRNA expression and its protein secretion, and increased PAI-1 production in mature adipocytes. Dimethyloxallyl glycine, a stabilizer of hypoxia-inducible factor 1alpha (HIF-1alpha), mimicked the hypoxia-mediated modulations of these two adipokines. Hypoxia caused a modest elevation of ROS in adipocytes. However, ablation of intracellular ROS by antioxidants failed to alleviate hypoxia-induced aberrant production of adiponectin and PAI-1. On the other hand, the antioxidants could reverse hydrogen peroxide (H2O2)-induced dysregulation of adiponectin and PAI-1 production. H2O2 treatment decreased the expression levels of peroxisome proliferator-activated receptor gamma (PPARgamma) and CCAAT/enhancer binding protein (C/EBPalpha), but had no effect on HIF-1alpha, whereas hypoxia stabilized HIF-1alpha and decreased expression of C/EBPalpha, but not PPARgamma. Taken together, these data suggest that hypoxia and ROS decrease adiponectin production and augment PAI-1 expression in adipocytes via distinct signaling pathways. These effects may contribute to hypoadiponectinemia and elevated PAI-1 levels in obesity, type 2 diabetes, and cardiovascular diseases.  相似文献   

8.
Summary Knowledge of the metabolic changes that occur in insulin-resistant type 2 diabetes is relatively lacking compared to insulin-deficient type 1 diabetes. This paper summarizes the importance of the C57BL/KsJ-db/db mouse as a model of type 2 diabetes, and illustrates the effects that insulin-deficient and insulin-resistant states have on hepatic glycogen metabolism. A longitudinal study of db/db mice of ages 2–15 weeks revealed that significant changes in certain parameters of hepatic glycogen metabolism occur during this period. The liver glycogen levels were similar between diabetic and control mice. However, glycogen particles from db/db mice were on average smaller in mass and had shorter exterior and interior chain lengths. Total phosphorylase and phosphorylase a activities were elevated in the genetically diabetic mice. This was primarily due to an increase in the amount of enzymic protein apparently the result of a decreased rate of degradation. It was not possible to find a consistent alteration in glycogen synthase activity in the db/db mice. Glycogen synthase and phosphorylase from diabetic liver revealed some changes in kinetic properties in the form of a decrease in Vmax, and altered sensitivity to inhibitors like ATP. The altered glycogen structure in db/db mice may have contributed to changes in the activities and properties of glycogen synthase and phosphorylase. The exact role played by hormones (insulin and glucagon) in these changes is not clear but further studies should reveal their contributions. The db/db mouse provides a good model for type 2 diabetes and for fluctuating insulin and glucagon ratios. Its use should clarify the regulation of hepatic glycogen metabolism and other metabolic processes known to be controlled by these hormones. The other animal models of type 2 diabetes, ob/ob mouse and fatty Zucker (fa/fa) rat, show similar impairment of hepatic glycogen metabolism. The concentrations of glycogen metabolizing enzymes are high and in vitro studies indicate enhanced rate of glycogen synthesis and breakdown. However, streptozotocin-induced diabetic animals and BB rats which resemble insulin-deficient type 1 diabetes are characterized by decreased glycogen turnover as a result of reduction in the levels of glycogen metabolizing enzymes.  相似文献   

9.
Adiponectin (APN) can confer protection against metabolism-related illnesses in organs such as fat, the liver, and skeletal muscle. However, it is unclear whether APN improves endothelial-dependent nitric oxide-mediated vasodilation in type 2 diabetes and, if so, by what mechanism. We tested whether exogenous APN delivery improves endothelial function in type 2 diabetic mice and explored the mechanisms underlying the observed improvement. To test the hypothesis, we injected adenovirus APN (Ad-APN) or adenovirus β-galactosidase (Ad-βgal; control virus) via the tail vein in control (m Lepr(db)) and diabetic (Lepr(db); db/db) mice and studied vascular function of the aorta ex vivo. Ad-APN improved endothelial-dependent vasodilation in db/db mice compared with Ad-βgal, whereas Ad-APN had no further improvement on endothelial function in control mice. This improvement was completely inhibited by a nitric oxide synthase inhibitor (N(G)-nitro-l-arginine methyl ester). Serum triglyceride and total cholesterol levels were increased in db/db mice, and Ad-APN significantly reduced triglyceride levels but not total cholesterol levels. Immunoblot results showed that interferon-γ, gp91(phox), and nitrotyrosine were markedly increased in the aorta of db/db mice. Ad-APN treatment decreased the expression of these proteins. In addition, mRNA expression of TNF-α, IL-6, and ICAM-1 was elevated in db/db mice, and Ad-APN treatment decreased these expressions in the aorta. Our findings suggest that APN may contribute to an increase in nitric oxide bioavailability by decreasing superoxide production as well as by inhibiting inflammation and adhesion molecules in the aorta in type 2 diabetic mice.  相似文献   

10.
脂肪细胞对胰岛β细胞功能的内分泌调节作用   总被引:2,自引:0,他引:2  
Zhao YF  Chen C 《生理学报》2007,59(3):247-252
脂肪因子包括脂肪细胞分泌的多种活性因子,它们通过内分泌方式调节胰岛β细胞的胰岛素分泌、基因表达以及细胞凋亡等多方面的功能。本文提出脂肪因子影响胰岛β细胞功能主要通过三条相互联系的途径而实现。第一是调节β细胞内葡萄糖和脂肪的代谢;第二是影响β细胞离子通道的活性;第三是改变β细胞本身的胰岛素敏感性。脂肪细胞的内分泌功能是一个动态过程,在不同的代谢状态下,各脂肪因子的分泌发生不同变化。从正常代谢状态发展到肥胖以及2型糖尿病的过程中,脂肪因子参与了胰岛β细胞功能障碍的发生与发展。  相似文献   

11.
Ghrelin is a physiological‐active peptide with growth hormone‐releasing activity, orexigenic activity, etc. In addition, the recent study has also suggested that ghrelin possesses the pathophysiological abilities related with type 2 diabetes. However, the ghrelin‐direct‐effects implicated in type 2 diabetes on peripheral tissues have been still unclear, whereas its actions on the central nervous system (CNS) appear to induce the development of diabetes. Thus, to assess its peripheral effects correlated with diabetes, we investigated the regulatory mechanisms about adipokines, which play a central role in inducing peripheral insulin resistance, secreted from mature 3T3‐L1 adipocytes stimulated with ghrelin in vitro . The stimulation with 50 nmol/L ghrelin for 24 h resulted in the significant 1.9‐fold increase on vascular endothelial growth factor‐120 (VEGF120) releases (p < 0.01) and the 1.7‐fold on monocyte chemoattractant protein‐1 (MCP‐1) (p < 0.01) from 3T3‐L1 adipocytes, respectively, while ghrelin failed to enhance tumor necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, IL‐10 and adiponectin secretions. In addition, Akt phosphorylation on Ser473 and c‐Jun NH2‐terminal protein kinase (JNK) phosphorylation on Thr183/Tyr185 were markedly enhanced 1.4‐fold (p < 0.01) and 1.6‐fold (p < 0.01) in the ghrelin‐stimulated adipocytes, respectively. Furthermore, the treatment with LY294002 (50 μmol/L) and Wortmannin (10nmol/L), inhibitors of phosphatidylinositol 3‐kinase (PI3K), significantly decreased the amplified VEGF120 secretion by 29% (p < 0.01) and 28% (p < 0.01) relative to the cells stimulated by ghrelin alone, respectively, whereas these inhibitors had no effects on increased MCP‐1 release. On the other hand, JNK inhibitor SP600125 (10 μmol/L) clearly reduced the increased MCP‐1, but not VEGF120, release by 35% relative to the only ghrelin‐stimulated cells (p < 0.01). In conclusion, ghrelin can enhance the secretions of proinflammatory adipokines, VEGF120 and MCP‐1, but fails to affect IL‐10 and adiponectin which are considered to be anti‐inflammatory adipokines. Moreover, this augmented VEGF120 release is invited through the activation of PI3K pathways and the MCP‐1 is through JNK pathways. Consequently, our results strongly suggest that ghrelin can induce the development of diabetes via its direct‐action in peripheral tissues as well as via in CNS. J. Cell. Physiol. 230: 199–209, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.  相似文献   

12.
Adipose tissue is a critical exchange center for complex energy transactions involving triacylglycerol storage and release. It also has an active endocrine role, releasing various adipose-derived cytokines (adipokines) that participate in complex pathways to maintain metabolic and vascular health. Here, we found D-dopachrome tautomerase (DDT) as an adipokine secreted from human adipocytes by a proteomic approach. DDT mRNA levels in human adipocytes were negatively correlated with obesity-related clinical parameters such as BMI, and visceral and subcutaneous fat areas. Experiments using SGBS cells, a human preadipocyte cell line, revealed that DDT mRNA levels were increased in an adipocyte differentiation-dependent manner and DDT was secreted from adipocytes. In DDT knockdown adipocytes differentiated from SGBS cells that were infected with the adenovirus expressing shRNA against the DDT gene, mRNA levels of genes involved in both lipolysis and lipogenesis were slightly but significantly increased. Furthermore, we investigated AMP-activated protein kinase (AMPK) signaling, which phosphorylates and inactivates enzymes involved in lipid metabolism, including hormone-sensitive lipase (HSL) and acetyl-CoA carboxylase (ACC), in DDT knockdown adipocytes. The AMPK phosphorylation of HSL Ser-565 and ACC Ser-79 was inhibited in DDT knockdown cells and recovered in the cells treated with recombinant DDT (rDDT), suggesting that down-regulated DDT in adipocytes brings about a state of active lipid metabolism. Furthermore, administration of rDDT in db/db mice improved glucose intolerance and decreased serum free fatty acids levels. In the adipose tissue from rDDT-treated db/db mice, not only increased levels of HSL phosphorylated by AMPK, but also decreased levels of HSL phosphorylated by protein kinase A (PKA), which phosphorylates HSL to promote its activity, were observed. These results suggested that DDT acts on adipocytes to regulate lipid metabolism through AMPK and/or PKA pathway(s) and improves glucose intolerance caused by obesity.  相似文献   

13.
S-(2-succino)cysteine (2SC) is a chemical modification of proteins produced by reaction of fumarate with thiol groups in protein, a process known as succination. We propose to use the name S-(2-succino)cysteine (instead of S-(2-succinyl)cysteine) from this point on. This is to distinguish protein succination (in which fumarate forms a thioether linkage with cysteine residues) from succinylation (in which an ester, thioester or amide bond would be formed). Succination of proteins is increased in muscle of type 1 diabetic rats and in adipose tissue in type 2 diabetic mice. The increase in 2SC is a direct result of tissue accumulation of fumarate in response to nutrient excess and resultant mitochondrial stress in diabetes. In this study, we examine the breadth of succination of tissue proteins in the db/db type 2 model of diabetes. We also determined the extent of succination in epididymal adipocytes of type 1 (Akita, streptozotocin (STZ)) and type 2 (ob/ob, db/db) diabetic mice, in diet-induced obese (DIO) mice, and in the adipose tissue of ground squirrels in various stages of hibernation. While succination was not increased in most tissues (brain, heart, kidney, liver, skeletal muscle) in the db/db model of diabetes, it was increased in all adipose beds of type 2 diabetic and DIO mice in comparison to their controls. Succination was not increased in adipocytes of type 1 diabetic mice. Adipose tissue from hibernating (HIB) 13-lined ground squirrels was also studied to determine if obesity in the absence of hyperglycemia affected succination of proteins. There were no differences in succination of proteins in brown or white adipose tissue over the torpor-arousal cycle. We conclude that 2SC is a biomarker of nutrient excess and mitochondrial stress in adipose tissue, increasing under the hyperglycemic and insulin resistant conditions associated with type 2 diabetes and obesity.  相似文献   

14.
15.
16.
Atherosclerosis development is accelerated severalfold in patients with Type 2 diabetes. In the initial stages of disease, monocytes transmigrate into the subendothelial space and differentiate into foam cells. Scavenger receptors and ATP binding cassette (ABC) Transporters play an important role in foam cell formation as they regulate the influx and efflux of oxidized lipids. Here, we show that peritoneal macrophages isolated from Type 2 diabetic db/db mice have decreased expression of the ABC transporter ABCG1 and increased expression of the scavenger receptor CD36. We found a 2-fold increase in accumulation of esterified cholesterol in diabetic db/db macrophages compared with wild-type control macrophages. Diabetic db/db macrophages also had impaired cholesterol efflux to high density lipoprotein but not to lipid-free apo A-I, suggesting that the increased esterified cholesterol in diabetic db/db macrophages was due to a selective loss of ABCG1-mediated efflux to high density lipoprotein. Additionally, we were able to confirm down-regulation of ABCG1 using C57BL/6J peritoneal macrophages cultured in elevated glucose in vitro (25 mM glucose for 7 days), suggesting that ABCG1 expression in diabetic macrophages is regulated by chronic exposure to elevated glucose. Diabetic KK(ay) mice were also studied and were found to have decreased ABCG1 expression without an increase in CD36. These observations demonstrate that ABCG1 plays a major role in macrophage cholesterol efflux and that decreased ABCG1 function can facilitate foam cell formation in Type 2 diabetic mice.  相似文献   

17.
Lysophosphatidylserine (LPS) is known to have diverse cellular effects, but although LPS is present in many biological fluids, its in vivo effects have not been elucidated. In the present study, we investigated the effects of LPS on glucose metabolism in vivo, and how skeletal muscle cells respond to LPS stimulation. LPS enhanced glucose uptake in a dose- and time-dependent manner in L6 GLUT4myc myotubes, and this effect of LPS on glucose uptake was mediated by a Gαi and PI 3-kinase dependent signal pathway. LPS increased the level of GLUT4 on the cell surface of L6 GLUT4myc myotubes, and enhanced glucose uptake in 3T3-L1 adipocytes. In line with its cellular functions, LPS lowered blood glucose levels in normal mice, while leaving insulin secretion unaffected. LPS also had a glucose-lowering effect in STZ-treated type 1 diabetic mice and in obese db/db type 2 diabetic mice. This study shows that LPS-stimulated glucose transport both in skeletal muscle cells and adipocytes, and significantly lowered blood glucose levels both in type 1 and 2 diabetic mice. Our results suggest that LPS is involved in the regulation of glucose homeostasis in skeletal muscle and adipose tissue.  相似文献   

18.
The adipose tissue exerts a double function that is crucial for energy homeostasis. On the one hand, it is the only organ suited to stock triglycerides in highly specialized cells, the adipocytes. On the other hand, the adipose tissue produces biologically active molecules, collectively named "adipokines", which have been implicated in energy balance and glucose and lipid metabolism. Both adipocytes and cells of the stromal fraction participate in this function of secretion. The adipokines acts locally, in an autocrine or paracrine manner, and distantly (endocrine), on various targets, including muscles, the liver and the hypothalamus. Some adipokines, as TNFalpha and IL6, promote insulin resistance and inflammation, whereas others, as leptin and adiponectin, are required for energy and glucose homeostasis. In obesity, adipose cell hypertrophy and the recruitment of macrophages alter the secretory function and induce an inflammatory profile in the adipose tissue. Analyses of gene expression suggest that hypoxia is one of the factors favoring the attraction of the macrophages. The local and systemic consequences of interactions between macrophages and adipocytes are currently actively studied, to understand their potential implication in the metabolic and cardiovascular complications associated with obesity.  相似文献   

19.
20.

Introduction

Intermittent hypoxia (IH)-induced activation of pro-inflammatory pathways is a major contributing factor to the cardiovascular pathophysiology associated with obstructive sleep apnea (OSA). Obesity is commonly associated with OSA although it remains unknown whether adipose tissue is a major source of inflammatory mediators in response to IH. The aim of this study was to test the hypothesis that IH leads to augmented inflammatory responses in human adipocytes when compared to cells of non-adipocyte lineages.

Methods and results

Human primary subcutaneous and visceral adipocytes, human primary microvascular pulmonary endothelial cells (HUMEC-L) and human primary small airway epithelial cells (SAEC) were exposed to 0, 6 or 12 cycles of IH or stimulated with tumor necrosis factor (TNF)-α. IH led to a robust increase in NF-κB DNA-binding activity in adipocytes compared with normoxic controls regardless of whether the source of adipocytes was visceral or subcutaneous. Notably, the NF-κB response of adipocytes to both IH and TNF-α was significantly greater than that in HUMEC-L and SAEC. Western blotting confirmed enhanced nuclear translocation of p65 in adipocytes in response to IH, accompanied by phosphorylation of I-κB. Parallel to p65 activation, we observed a significant increase in secretion of the adipokines interleukin (IL)-8, IL-6 and TNF-α with IH in adipocytes accompanied by significant upregulation of mRNA expression. PCR-array suggested profound influence of IH on pro-inflammatory gene expression in adipocytes.

Conclusion

Human adipocytes demonstrate strong sensitivity to inflammatory gene expression in response to acute IH and hence, adipose tissue may be a key source of inflammatory mediators in OSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号