首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a promising candidate for anticancer therapy due to its selective toxicity to cancer cells. Nevertheless, because of TRAIL resistance in some cancer cells, combined treatment with sensitizing agents is required to enhance the anticancer potential of TRAIL. In this study, we investigated the underlying mechanism of apigenin-induced sensitization of HepG2 cells to TRAIL-induced cell death. Synergistic induction of apoptosis by combination was confirmed by examining the typical morphology changes of apoptosis, PARP-cleavage, and activation of effector caspases. Z-VAD-fmk, a pan-caspase inhibitor, inhibited the enhanced cell death by combined treatment of apigenin and TRAIL, demonstrating that a caspase-dependent pathway is involved in apigenin/TRAIL-mediated apoptosis. In addition, we found that apigenin/ TRAIL co-treatment up-regulates DR5 cell surface expression. The synergistic induction of cell death by the apigenin/ TRAIL combination was significantly attenuated by DR5 blocking chimera antibody. Next, using pharmacological inhibitors, we found that ERK activation is involved in the induction of DR5 expression. Inhibition of ERK1/2 by U0126 significantly decreased the apigenin/TRAIL-induced DR5 expression and apoptosis. Taken together, our results indicate that apigenin can enhance the apoptotic effect of TRAIL via ERK-induced up-regulation of DR5.  相似文献   

4.
Kahweol, a coffee-specific diterpene, found in the beans of Coffea arabica, has potent anti-carcinogenic, anti-tumor, and anti-inflammatory properties. TRAIL is a potential anti-cancer compound that induces apoptosis in a wide variety of cancer cells, but not in most normal human cell types. In the present study, we show that kahweol sensitizes human renal cancer cells, but not normal human mesangial cells, to TRAIL-mediated apoptosis. Moreover, treatment with a combination of kahweol and TRAIL induces significant apoptosis in various cancer cell types, thus presenting an attractive novel strategy for cancer treatment. Our experiments show that treatment with a combination of kahweol and TRAIL-induced apoptosis, and stimulated of DEVDase activity, DNA fragmentation, and cleavage of PARP, which was prevented by pretreatment with z-VAD, indicative of cell death via a caspase-dependent pathway. Kahweol-induced down-regulation of Bcl-2 and ectopic expression of Bcl-2 led to attenuation of kahweol plus TRAIL-mediated apoptosis, indicative of Bcl-2 involvement in the apoptotic process. In addition, the c-FLIP and caspase signal pathways seem to play a crucial role in apoptosis triggered by the combination of kahweol and TRAIL in Caki cells. Our results collectively demonstrate that down-regulation of Bcl-2 and c-FLIP contributes to the sensitizing effect of kahweol on TRAIL-mediated apoptosis in cancer cells.  相似文献   

5.
6.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy. However, a number of prostate cancer cells exhibit high resistance to TRAIL effect. In this study, we found that Triptolide, a Chinese medicine, significantly sensitizes prostate cancer cells to TRAIL-mediated cellular apoptosis by up-regulating DR5 expression. Triptolide treatment can suppress Akt/Hdm2 signaling pathway, and lead to p53 accumulation, thereby up-regulating DR5 expression. Taken together, all evidences indicate that Triptolide may become a promising therapeutic agent that prevents the progression of prostate cancer.  相似文献   

7.
8.
Thioridazine has been known as an antipsychotic agent, but it also has anticancer activity. However, the effect of thioridazine on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitization has not yet been studied. Here, we investigated the ability of thioridazine to sensitize TRAIL-mediated apoptosis. Combined treatment with thioridazine and TRAIL markedly induced apoptosis in various human carcinoma cells, including renal carcinoma (Caki, ACHN, and A498), breast carcinoma (MDA-MB231), and glioma (U251MG) cells, but not in normal mouse kidney cells (TMCK-1) and human normal mesangial cells. We found that thioridazine downregulated c-FLIP(L) and Mcl-1 expression at the post-translational level via an increase in proteasome activity. The overexpression of c-FLIP(L) and Mcl-1 overcame thioridazine plus TRAIL-induced apoptosis. We further observed that thioridazine inhibited the Akt signaling pathway. In contrast, although other phosphatidylinositol-3-kinase/Akt inhibitors (LY294002 and wortmannin) sensitized TRAIL-mediated apoptosis, c-FLIP(L) and Mcl-1 expressions were not altered. Furthermore, thioridazine increased the production of reactive oxygen species (ROS) in Caki cells, and ROS scavengers (N-acetylcysteine, glutathione ethyl ester, and trolox) inhibited thioridazine plus TRAIL-induced apoptosis, as well as Akt inhibition and the downregulation of c-FLIP(L) and Mcl-1. Collectively, our study demonstrates that thioridazine enhances TRAIL-mediated apoptosis via the ROS-mediated inhibition of Akt signaling and the downregulation of c-FLIP(L) and Mcl-1 at the post-translational level.  相似文献   

9.
Ras activation is a frequent event in human hepatocarcinoma that may contribute to resistance towards apoptosis. Salirasib is a ras and mTOR inhibitor that induces a pro-apoptotic phenotype in human hepatocarcinoma cell lines. In this work, we evaluate whether salirasib sensitizes those cells to TRAIL-induced apoptosis. Cell viability, cell death and apoptosis were evaluated in vitro in HepG2, Hep3B and Huh7 cells treated with DMSO, salirasib and YM155 (a survivin inhibitor), alone or in combination with recombinant TRAIL. Our results show that pretreatment with salirasib sensitized human hepatocarcinoma cell lines, but not normal human hepatocytes, to TRAIL-induced apoptosis. Indeed, FACS analysis showed that 25 (Huh7) to 50 (HepG2 and Hep3B) percent of the cells treated with both drugs were apoptotic. This occurred through activation of the extrinsic and the intrinsic pathways, as evidenced by a marked increase in caspase 3/7 (five to ninefold), caspase 8 (four to sevenfold) and caspase 9 (eight to 12-fold) activities in cells treated with salirasib and TRAIL compared with control. Survivin inhibition had an important role in this process and was sufficient to sensitize hepatocarcinoma cells to apoptosis. Furthermore, TRAIL-induced apoptosis in HCC cells pretreated with salirasib was dependent on activation of death receptor (DR) 5. In conclusion, salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis by a mechanism involving the DR5 receptor and survivin inhibition. These results in human hepatocarcinoma cell lines and primary hepatocytes provide a rationale for testing the combination of salirasib and TRAIL agonists in human hepatocarcinoma.  相似文献   

10.
11.
While melanoma cell lines use aerobic glycolysis, addition of a competitive inhibitor such as 2-deoxyglucose (2DG) by itself achieved only modest killing. To overcome high levels of pro-survival proteins in melanoma cells, 2DG or glucose deprivation (GD) was combined with tumor necrosis factor-related apoptosis inducing-ligand (TRAIL). TRAIL treatment by itself also only induced modest killing, but combining TRAIL with 2DG or GD triggered a synergistic pro-apoptotic response in melanoma lines but not melanocytes. In melanoma cells, there was cleavage of caspases 3, 8 and Bid. Killing by combination treatments was completely blocked by a pan-caspase inhibitor, z-VAD. Mechanistically, 2DG and GD enhanced surface levels for both death receptors (DR4 and DR5); which was accompanied by reductions in levels of Mcl-1, Bcl-2 and survivin. Mannose pre-treatment reduced enhanced killing by combination treatments, accompanied by reduced DR5 levels. These results indicate melanoma cells in which there is altered glucose-related metabolomics can be exploited by interfering with glucose metabolism in combination with TRAIL; thereby overcoming the notorious death resistance of melanoma. Thus, a new therapeutic window is open for future clinical trials using agents targeting the glucose-related metabolome, in combination with agents triggering death receptors in patients with melanoma.  相似文献   

12.
Colo GP  Rosato RR  Grant S  Costas MA 《FEBS letters》2007,581(26):5075-5081
The nuclear receptor coactivator RAC3 plays important roles in many biological processes and tumorigenesis. We found that RAC3 is over-expressed in human chronic myeloid leukemia cells K562, which are normally resistant to TRAIL-induced apoptosis. RAC3 down-regulation by siRNA rendered these cells sensitive to TRAIL-induced cell death. In addition to the up-regulation of TRAIL receptors, the process involves Bid, caspases and PARP activation, loss of mitochondrial membrane potential, and release of AIF, cytochrome c and Smac/DIABLO to the cytoplasm. We conclude that RAC3 is required for TRAIL resistance and that this anti-apoptotic function is independent of its role in hormone receptor signaling.  相似文献   

13.
14.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) shows promise as a chemotherapeutic agent. However, many human cancer cells are resistant to killing by TRAIL. We have previously demonstrated that reovirus infection increases the susceptibility of human lung (H157) and breast (ZR75-1) cancer cell lines to TRAIL-induced apoptosis. We now show that reovirus also increases the susceptibility of human ovarian cancer cell lines (OVCAR3, PA-1 and SKOV-3) to TRAIL-induced apoptosis. Reovirus-induced increases in susceptibility of OVCAR3 cells to TRAIL require virus uncoating and involve increased activation of caspases 3 and 8. Reovirus infection results in the down-regulation of cFLIP (cellular FLICE inhibitory protein) in OVCAR3 cells. Down-regulation of cFLIP following treatment of OVCAR3 cells with antisense cFLIP oligonucleotides or PI3 kinase inhibition also increases the susceptibility of OVCAR3 cells to TRAIL-induced apoptosis. Finally, over-expression of cFLIP blocks reovirus-induced sensitization of OVCAR3 cells to TRAIL-induced apoptosis. The combination of reovirus and TRAIL thus represents a promising new therapeutic approach for the treatment of ovarian cancer.  相似文献   

15.
It has been well-characterized that the renin-angiotensin system (RAS) physiologically regulates systemic arterial pressure. However, RAS signaling has also been shown to increase cell proliferation during malignancy, and angiotensin receptor blockers (ARBs) are able to decrease pro-survival signaling by inhibiting anti-apoptotic molecules and suppressing caspase activity. In this study, the apoptotic effects of telmisartan, a type of ARB, was evaluated using a non-cancerous human renal cell line (HEK) and a human renal cell carcinoma (RCC) cell line (786). Both types of cells were treated with telmisartan for 4 h, 24 h, and 48 h, and then were assayed for levels of apoptosis, caspase-3, and Bcl-2 using MTT assays, flow cytometry, and immunostaining studies. Analysis of variance was used to identify significant differences between these data (P < 0.05). Following the treatment of 786 cells with 100 µM and 200 µM telmisartan, a marked inhibition of cell proliferation was observed. 50 µM cisplatin also caused high inhibition of these cells. Moreover, these inhibitions were both concentration- and time-dependent (P < 0.05). Various apoptotic effects were also observed compared with control cells at the 24 h and 48 h timepoints assayed (P < 0.001). Furthermore, positive caspase-3 staining and down-regulation of Bcl-2 were detected, consistent with induction of cell death. In contrast, treatment of HEK cells with telmisartan did not produce an apoptotic effect compared with control cells at the 24 h timepoint (P > 0.05). Treatment with cisplatin promoted in HEK cells high index of apoptosis (P < 0.001). Taken together, these results suggest that telmisartan induces apoptosis via down-regulation of Bcl-2 and involvement of caspase-3 in human RCC cells.  相似文献   

16.
Aberrant activation of the Hedgehog (Hh) signaling pathway has been reported in various cancer types including hepatocellular carcinoma (HCC). As a key effector of this signaling, Gli2 plays a crucial role in carcinogenesis, including the activation of genes encoding apoptosis inhibitors and cell-cycle regulators. In this study, we examined the role of Gli2 proliferation and survival of HCC cells. First, the expression levels of Hh pathway components were detected in a subset of HCC cell lines. To establish the role of Gli2 in maintaining the tumorigenic properties of HCC cells, we developed small hairpin RNA (shRNA) targeting Gli2 and transfected it into SMMC-7721 cell, which was selected with high level of Hh signaling expression. Next, effects of Gli2 gene silencing, on cell proliferation and on the expression of cell cycle-related proteins were evaluated, then, whether down-regulation of Gli2 renders HCC cell susceptible to TRAIL was examined in vitro. Knockdown of Gli2 inhibited cell proliferation and induced G1 phase arrest of cell cycle in SMMC-7721 cell through down-regulation of cyclin D1, cyclinE2, and up-regulation of p21-WAF1. Also, Gli2 gene siliencing sensitized SMMC-7721 cell to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by reducing the expression of the long and short isoform of c-FLIP and Bcl-2, and then augmented the activation of initiator caspases-8/-9 and effector caspases-3, which induces PARP cleavage. In conclusion, our data suggest that Gli2 plays a predominant role in the proliferation and apoptosis resistance of HCC cells, and that knockdown of Gli2 may be a novel anticancer strategy for the treatment of HCC.  相似文献   

17.
Induction of apoptosis by the death ligand TRAIL might be a promising therapeutic approach in cancer therapy. However, since not all tumor cells are sensitive to TRAIL, there is a need for the development of strategies to overcome TRAIL-resistance. The results of the present study show that the anti-diabetic drug troglitazone sensitizes human glioma and neuroblastoma cells to TRAIL-induced apoptosis. This process is accompanied by a substantial increase of active caspase 8 and active caspase 3, but it is independent of troglitazone's effects on the nuclear receptor PPAR-γ. Troglitazone induces a pronounced reduction in protein expression levels of the anti-apoptotic FLICE-inhibitory protein (FLIP) without affecting FLIP mRNA levels. Further, protein and mRNA expression levels of the anti-apoptotic protein Survivin significantly decrease upon treatment with troglitazone. Moreover, sensitization to TRAIL is partly accompanied by an up-regulation of the TRAIL receptor, TRAIL-R2. A combined treatment with troglitazone and TRAIL might be a promising experimental therapy because troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via various mechanisms, thereby minimizing the risk of acquired tumor cell resistance. This work was supported by a grant from the Deutsche Krebshilfe (German Cancer Aid, Max Eder Program).  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号