首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteasome inhibitors enhance bone formation and osteoblastic differentiation in vivo and in vitro. In the present study, we examined whether the molecular mechanisms of lactacystin, one of many proteasome inhibitors, stimulated the osteoblastic differentiation of C2C12 cells that is induced by bone morphogenetic proteins (BMPs). Pretreatment with lactacystin enhanced the alkaline phosphatase (ALP) activity induced by BMP2, BMP4 or BMP7, but lactacystin did not induce ALP in the absence of BMPs. In addition, lactacystin-stimulated BMP2 induced mRNA expression of ALP, type I collagen, osteonectin, osteocalcin, Id1, Osterix, and Runx2. Lactacystin maintained BMP2-induced phosphorylation of Smad1/5/8 and increased the length of time that these Smads were bound to target DNA. Moreover, lactacystin prevented BMP receptor-induced Smad degradation. This enhancement of BMP2-induced ALP activity and Smad phosphorylation by lactacystin was also observed in primary osteoblasts. These findings suggest that pretreatment with lactacystin accelerates BMP-induced osteoblastic differentiation by increasing the levels of phosphorylated Smads, which are maintained because BMP receptor-induced degradation is inhibited. We propose that optimized stimulation by proteasome inhibitors in a clinical setting may facilitate autogenous or BMP-induced bone formation in areas of defective bone.  相似文献   

2.
Bone is a highly vascularized organ, thus angiogenesis is a vital process during bone remodeling. However, the role of vascular systems in bone remodeling is not well recognized. Here we show that netrin-4 inhibits osteoclast differentiation in vitro and in vivo. Co-cultures of bone marrow macrophages with vascular endothelial cells markedly inhibited osteoclast differentiation. Adding a neutralizing antibody, or RNA interference against netrin-4, restored in vitro osteoclast differentiation. Administration of netrin-4 prevented bone loss in an osteoporosis mouse model by decreasing the osteoclast number. We propose that vascular endothelial cells interact with bone in suppressing bone through netrin-4.  相似文献   

3.
Receptor activator of NF-κB (RANK) and RANK ligand (RANKL) are known to play an important role in the development and progression of breast cancer. However, the mechanisms by which stimuli regulate the expression of RANK and RANKL in breast cancer cells are largely unknown. In this study, we show that hypoxia, a common feature of malignant tumors, can enhance the expression of RANK and RANKL mRNA and protein in MDA-MB-231 and MCF-7 breast cancer cells. In addition, we found that hypoxia induced hypoxia-inducible factor-1 alpha (HIF-1α) and phosphorylation of Akt, resulting in upregulation of RANK and RANKL expression; HIF-1α-targeted siRNA and PI3K-Akt inhibitor abrogated this upregulation in MDA-MB-231 cells. Furthermore, we also observed that hypoxia accelerated RANKL-mediated cell migration, which was inhibited following HIF-1α knockdown and PI3K-Akt inhibition. Thus, we provide evidence that hypoxia upregulates RANK and RANKL expression and increases RANKL-induced cell migration via the PI3K/Akt-HIF-1α pathway.  相似文献   

4.

Background

Bone is a common site of metastasis for lung cancer, and is associated with significant morbidity and a dismal prognosis. MicroRNAs (miRNAs) are increasingly implicated in regulating the progression of malignancies.

Methods

The efficacy of miR-33a or anti-miR-33a plasmid was assessed by Real-time PCR. Luciferase assays were using One-Glo Luciferase Assay System. Measurement of secreted factors was determined by ELISA kit.

Results

We have found that miR-33a, which is downregulated in lung cancer cells, directly targets PTHrP (parathyroid hormone-related protein), a potent stimulator of osteoclastic bone resorption, leading to decreased osteolytic bone metastasis. We also found that miR-33a levels are inversely correlated with PTHrP expression between human normal bronchial cell line and lung cancer cell lines. The reintroduction of miR-33a reduces the stimulatory effect of A549 on the production of osteoclastogenesis activator RANKL (receptor activator of nuclear factor kappa-B ligand) and M-CSF (macrophage colony-stimulating factor) on osteoblasts, while the expression of PTHrP is decreased in A549 cells. miR-33a overexpression also reduces the inhibitory activity of A549 on the production of OPG (osteoprotegerin), an osteoclastogenesis inhibitor. In addition, miR-33a-mediated PTHrP downregulation results in decreased IL-8 secretion in A549, which contributes to decreased lung cancer-mediated osteoclast differentiation and bone resorption.

Conclusions

These findings have led us to conclude that miR-33a may be a potent tumor suppressor, which inhibits direct and indirect osteoclastogenesis through repression of PTHrP.

General significance

miR-33a may even predict a poor prognosis for lung cancer patients.  相似文献   

5.
Yang Y  Zhu R  Bai J  Zhang X  Tian Y  Li X  Peng Z  He Y  Chen L  Ji Q  Chen W  Fang D  Wang R 《Experimental cell research》2011,(11):1640-1648
Numb was originally identified as an important cell fate determinant that is asymmetrically inherited during mitosis and controls the fate of sibling cells by inhibiting the Notch signaling pathway in neural tissue. The small intestinal epithelium originates from the division of stem cells that reside in the crypt, which further differentiate into goblet cells, absorptive cells, paneth cells, and enteroendocrine cells. However, Numb's involvement in the differentiation process of intestinal epithelium is largely unknown. In the present study, we confirm that both the Numb mRNA and protein isoforms are expressed in adult mouse intestinal mucosa. Numb protein is ubiquitously expressed throughout the crypt–villus axis of the small intestinal epithelium and is mainly localized to the cytoplasmic membrane. Down-regulation of endogenous Numb using RNA interference in cultured intestinal LS174T cells increased Notch signaling, leading to the up-regulation of Hes1 and the down-regulation of Hath1. Knockdown of Numb alleviated MUC2 protein expression and led to loss of the goblet cell phenotype in LS174Tl cells. Our results provide the first evidence that Numb, an important cell fate determinant, modulates intestinal epithelial cells towards the goblet cell phenotype by inhibiting the Notch signaling pathway.  相似文献   

6.

Background

The interactions between metastatic breast cancer cells and host cells of osteoclastic lineage in bone microenvironment are essential for osteolysis. In vitro studies to evaluate pharmacological agents are mainly limited to their direct effects on cell lines. To mimic the communication between breast cancer cells and human osteoclasts, a simple and reproducible cellular model was established to evaluate the effects of zoledronate (zoledronic acid, ZOL), a bisphosphonate which exerts antiresorptive properties.

Methods

Human precursor osteoclasts were cultured on bone-like surfaces in the presence of stimuli (sRANKL, M-CSF) to ensure their activation. Furthermore, immature as well as activated osteoclasts were co-cultured with MDA-MB-231 breast cancer cells. TRAP5b and type I collagen N-terminal telopeptide (NTx) were used as markers. Osteoclasts’ adhesion to bone surface and subsequent bone breakdown were evaluated by studying the expression of cell surface receptors and certain functional matrix macromolecules in the presence of ZOL.

Results

ZOL significantly suppresses the precursor osteoclast maturation, even when the activation stimuli (sRANKL and M-SCF) are present. Moreover, it significantly decreases bone osteolysis and activity of MMPs as well as precursor osteoclast maturation by breast cancer cells. Additionally, ZOL inhibits the osteolytic activity of mature osteoclasts and the expression of integrin β3, matrix metalloproteinases and cathepsin K, all implicated in adhesion and bone resorption.

Conclusions

ZOL exhibits a beneficial inhibitory effect by restricting activation of osteoclasts, bone particle decomposition and the MMP-related breast cancer osteolysis.

General significance

The proposed cellular model can be reliably used for enhancing preclinical evaluation of pharmacological agents in metastatic bone disease.  相似文献   

7.

Introduction

Glucocorticoids are known to attenuate bone formation in vivo leading to decreased bone volume and increased risk of fractures, whereas effects on the joint tissue are less characterized. However, glucocorticoids appear to have a reducing effect on inflammation and pain in osteoarthritis. This study aimed at characterizing the effect of glucocorticoids on chondrocytes, osteoclasts, and osteoblasts.

Experimental

We used four model systems to investigate how glucocorticoids affect the cells of the joint; two intact tissues (femoral head- and cartilage-explants), and two separate cell cultures of osteoblasts (2T3-pre-osteoblasts) and osteoclasts (CD14+-monocytes). The model systems were cultured in the presence of two glucocorticoids; prednisolone or dexamethasone. To induce anabolic and catabolic conditions, cultures were activated by insulin-like growth factor I/bone morphogenetic protein 2 and oncostatin M/tumor necrosis factor-α, respectively. Histology and markers of bone- and cartilage-turnover were used to evaluate effects of glucocorticoid treatment.

Results

Prednisolone treatment decreased collagen type-II degradation in immature cartilage, whereas glucocorticoids did not affect collagen type-II in mature cartilage. Glucocorticoids had an anti-catabolic effect on catabolic-activated cartilage from a bovine stifle joint and murine femoral heads. Glucocorticoids decreased viability of all bone cells, leading to a reduction in osteoclastogenesis and bone resorption; however, bone morphogenetic protein 2-stimulated osteoblasts increased bone formation, as opposed to non-stimulated osteoblasts.

Conclusions

Using highly robust in vitro models of bone and cartilage turnover, we suggest that effects of glucocorticoids highly depend on the activation and differential stage of the cell targeted in the joint. Present data indicated that glucocorticoid treatment may be beneficial for articular cartilage, although detrimental effects on bone should be taken into account.  相似文献   

8.
Acetylcholine synthesis from radiolabelled glucose was monitored in cerebral cortex cells isolated from brains of suckling and adult rats. Acetylcholine synthesis was found much higher in suckling animals, both in the absence and presence of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) inhibitor, paraoxon. Together with choline (20 μM), carnitine was found to stimulate acetylcholine synthesis in a synergistic way in cortex cells from adult rats (18%). Choline, however, was incapable of reversing an inhibitory effect exerted by carnitine on acetylcholine synthesis in cortex cells from suckling animals. Distribution of carnitine derivatives was found significantly different in the cells from young and old animals, the content of acetylcarnitine decreased with age with a corresponding increase of free carnitine. The observed differences in carnitine effect on acetylcholine synthesis suggested that high acetylcarnitine in cells capable of β-oxidation might be correlated with the lower level of acetylcholine synthesis.  相似文献   

9.
Osteoclasts together with osteoblasts play pivotal roles in bone remodeling. Aberrations in osteoclast differentiation and activity contribute to osteopenic disease. Osteoclasts differentiate from monocyte/macrophage progenitors, a process that is initiated by the interaction between receptor activator of NF-κB (RANK) and its ligand, RANKL. In this study, we identified 7-oxo-7-deacetoxygedunin (7-OG), a gedunin type limonoid from seeds of the mangrove Xylocarpus moluccensis, as a potent inhibitor of osteoclastogenesis. Additionally, 7-OG showed strong anti-osteoclastogenic activity with low cytotoxicity against the monocyte/macrophage progenitor cell line, RAW264.7. The IC50 for anti-osteoclastogenic activity was 4.14 μM. Treatment with 7-OG completely abolished the appearance of multinucleated giant cells with tartrate-resistant acid phosphatase activity in RAW264.7 cells stimulated with RANKL. When the expression of genes related to osteoclastogenesis was investigated, a complete downregulation of NFATc1 and cathepsin K and a delayed downregulation of irf8 were observed upon 7-OG treatment in the presence of RANKL. Furthermore, treatment with this limonoid suppressed RANKL-induced activation of p38, MAPK and Erk and nuclear localization of NF-κB p65. Taken together, we present evidence indicating a plant limonoid as a novel osteoclastogenic inhibitor that could be used for osteoporosis and related conditions.  相似文献   

10.
Breast cancer is the most frequent form of cancer in women, with the highest incidence of metastasis to the bone. The reason for the preferential destination to the bone is believed to be due to chemoattractant factors released during bone resorption, which act on the cancer cells facilitating their metastasis. One of the factors released during osteolysis that may mediate breast cancer bone localization is Ca2+. Here, we show that extracellular Ca2+ (Ca2+o) acting via the calcium-sensing receptor (CaSR), greatly promotes the migration of bone-preferring breast cancer cells. In Boyden Chamber and Scratch Wound migration assays, an increase in breast cancer cell migration was observed at 2.5 mM and 5 mM Ca2+o compared to basal levels for three of the four breast cancer cell lines tested. However, a significantly greater migratory response was observed for the highly bone metastatic MDA-MB-231 cells, compared to the MCF7 and T47D, which have a lower metastatic potential in vivo. The BT474 cells, which do not metastasize to the bone, did not respond to elevated concentrations of Ca2+o in the migration assays. Inhibition of either ERK1/2 MAPK or phospholipase Cβ (PLCβ) led to an abolition of the Ca2+o-induced migration, implicating these pathways in the migratory response. Knockdown of the CaSR by siRNA resulted in an inhibition of the Ca2+o-induced migration, demonstrating the involvement of this receptor in the effect. These results suggest that the activation of the CaSR by elevated Ca2+o concentrations, such as those found near resorbing bone, produces an especially strong chemoattractant effect on bone metastatic breast cancer cells toward the Ca2+-rich environment.  相似文献   

11.
Laser scanning confocal microscopy is a powerful technique that can be applied to study the localisation and behaviour of proteins and nucleic acids in many experimental situations. It is a particularly useful technique for the study of virus infections because of the changes that occur in the distribution and amounts of both viral and cellular proteins as infection develops. These changes reflect key stages and important regulatory events that govern the efficiency of infection. Using herpes simplex virus type 1 infected cells as an experimental model, this article provides guidance for users new to confocal microscopy on basic principles and techniques. The emphasis is on recognising, diagnosing and avoiding potential artifacts, and the workflow of the production of high quality, technically correct images.  相似文献   

12.
13.
Recent studies have revealed that various neurotransmitters regulate the immune system via their receptors expressed on the immune cells. Calcitonin gene-related peptide (CGRP), a sensory nerve C-fiber neuropeptide, is also known to have the ability to modulate the functions of immune cells in vitro. However, the contribution of CGRP to the immune regulation in vivo remains to be fully elucidated. Here we report that mice deficient in receptor activity-modifying protein 1 (RAMP1), which is a subunit of the CGRP receptor, showed a significantly lower incidence of diarrhea compared with wild-type (WT) mice in the ovalbumin (OVA)-induced food allergic model. Serum OVA-specific IgE levels and the differentiation of T helper cells was comparable in WT mice and RAMP1-deficient mice. Moreover, there were no significant differences between recruitment and degranulation of mast cells in the small intestine of these mice. In contrast, significantly diminished intestinal peristalsis was observed by the allergy induction in RAMP1-deficient mice compared with WT mice. These results suggest that this suppression of allergic diarrhea is due to the diminished intestinal peristalsis in RAMP1-deficient mice.  相似文献   

14.
RNF8 is a nuclear protein having an N-terminal forkhead-associated (FHA) domain and a C-terminal RING-finger (RF) domain. Depletion of RNF8 caused cell growth inhibition and cell cycle arrest at not only S but also G2/M phases. In addition, cell death was frequently observed in RNF8-depleted cells. Analyses of time-lapse microscopy revealed that the cells died in mitosis and interphase. To elucidate the RNF8 function in M phase, the Plk1 content in RNF8-depleted cells was examined. The amount of RNF8 decreased time-dependently, whereas Plk1 reciprocally increased by transfection of RNF8 siRNA. Protein contents of RNF8 and Plk1 among various cell lines were also compared. RNF8 in normal cell lines was much higher than that in many cancer cell lines. Conversely, Plk1 in normal cell lines was lower than in cancer cell lines. These results suggest that RNF8 is downregulated in many cancer cells and inversely correlated with Plk1.  相似文献   

15.
In virus-infected cells, viral RNA with non-self structural pattern is recognized by DExD/Hbox RNA helicase, RIG-I. Once RIG-I senses viral RNA, it triggers a signaling cascade, resulting in the activation of genes including type I interferon, which activates antiviral responses. Overexpression of N-terminal caspase activation and recruitment domain (CARD) is sufficient to activate signaling; however basal activity of full-length RIG-I is undetectable. The repressor domain (RD), initially identified as a.a. 735–925, is responsible for diminished basal activity; therefore, it is suggested that RIG-I is under auto-repression in uninfected cells and the repression is reversed upon its encounter with viral RNA. In this report, we further delimited RD to a.a. 747–801, which corresponds to a linker connecting the helicase and the C-terminal domain (CTD). Alanine substitutions of the conserved residues in the linker conferred constitutive activity to full-length RIG-I. We found that the constitutive active mutants do not exhibit ATPase activity, suggesting that ATPase is required for de-repression but not signaling itself. Furthermore, trypsin digestion of recombinant RIG-I revealed that the wild-type, but not linker mutant conforms to the trypsin-resistant structure, containing CARD and helicase domain. The result strongly suggests that the linker is responsible for maintaining RIG-I in a “closed” structure to minimize unwanted production of interferon in uninfected cells. These findings shed light on the structural regulation of RIG-I function.  相似文献   

16.
Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2–93%)/SSEA1 (3–15%)/CXCR4 (1–72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells, but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.  相似文献   

17.
Experimental and clinical data support the notion that peroxisome proliferator-activated receptor γ (PPARγ) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan, an angiotensin receptor blocker (ARB), acts as a partial PPARγ agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPARγ activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPARγ antagonist), and losartan with no PPARγ activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NFκB) activation and tumor necrosis factor α. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPARγ activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPARγ in db/db mice and this effect of telmisartan was cancelled by the coadministration of GW9662. Our data provided the first evidence indicating that PPARγ activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. PPARγ activity of telmisartan was involved in the normalization of vascular PPARγ downregulation in diabetic mice. Thus, telmisartan seems to exert vascular protective effects in hypertensive patients with diabetes.  相似文献   

18.
Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated β-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.  相似文献   

19.
RANK and RANKL are essential mediators of osteoclastogenesis. RANK interacts with members of the tumor necrosis factor receptor-associated factor (TRAF) family, of which TRAF6 is the critical signaling molecule. We identified a unique TRAF6-binding motif in RANK, which was subsequently co-crystallized with TRAF6 revealing distinct molecular interactions. A cell-permeable TRAF6 decoy peptide (T6DP) was shown to specifically target TRAF6 and inhibit RANKL-mediated signaling. In this study, we identified a core motif for binding to TRAF6 by generating a series of deletion mutants linked via palmitate as a means to internalize the peptide, thus making a smaller scaffold for intracellular delivery. The core motif of RKIPTEDEY inhibited RANKL-mediated osteoclastogenesis and bone resorption. In contrast, TRAF2/5 decoy peptides appeared to have no affect. Thus, disruption of the RANK-TRAF6 interaction may prove useful as a novel target for the development of a small molecule therapeutic agent for the treatment of bone-related diseases.  相似文献   

20.
Synemin is a large intermediate filament protein that has been identified in all types of muscle cells. It plays a role in human muscle diseases; however, the role of synemin in tumor cell transformation has rarely been investigated. Because hepatocellular carcinoma cells are morphologically different from normal human hepatocytes, we hypothesized that altered synemin expression and cytoskeletal disorganization might underlie this pleomorphic transformation. To test this hypothesis, we studied synemin expression in hepatocellular carcinoma and liver tissues by immunohistochemistry and immunoblotting. In addition, we analyzed the expression level and organization of all cytoskeletal elements after synemin knock-down in human Chang liver cells. Previously we found that plectin knock-down in human Chang liver cells causes a reduction in cytokeratin 18 expression with effects on intermediate filament disorganization and altered cellular morphology. In this study we also compared the effects of synemin knock-down and plectin knock-down on the cytoskeleton expression and organization. The results revealed that synemin expression was down-regulated in human hepatocellular carcinoma compared with normal liver, which is similar to the plectin expression. Surprisingly, the expression of cytoskeletal elements (cytokeratin 18, actin and tubulin) was not influenced by synemin knock-down in human Chang liver cells. The organization of cytoskeletal networks was also unaltered after synemin knock-down. In conclusion, both plectin and synemin are down-regulated in human hepatocellular carcinoma in vivo and transformed human liver cell in vitro. However, the mechanism of cell transformation caused by synemin knock-down is different from that of plectin knock-down. Plectin, but not synemin, knock-down provoked liver cell transformation via suppressing cytokeratin 18 expression and disrupting intermediate filament networks. Synemin knock-down did not influence the cytoskeleton expression and organization of human Chang liver cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号