首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fructose-fed hamster model of insulin resistance was previously documented to exhibit marked hepatic very low density lipoprotein (VLDL) overproduction. Here, we investigated whether VLDL overproduction was associated with down-regulation of hepatic insulin signaling and insulin resistance. Hepatocytes isolated from fructose-fed hamsters exhibited significantly reduced tyrosine phosphorylation of the insulin receptor and insulin receptor substrates 1 and 2. Phosphatidylinositol 3-kinase activity as well as insulin-stimulated Akt-Ser473 and Akt-Thr308 phosphorylation were also significantly reduced with fructose feeding. Interestingly, the protein mass and activity of protein-tyrosine phosphatase-1B (PTP-1B) were significantly higher in fructose-fed hamster hepatocytes. Chronic ex vivo exposure of control hamster hepatocytes to high insulin also appeared to attenuate insulin signaling and increase PTP-1B. Elevation in PTP-1B coincided with marked suppression of ER-60, a cysteine protease postulated to play a role in intracellular apoB degradation, and an increase in the synthesis and secretion of apoB. Sodium orthovanadate, a general phosphatase inhibitor, partially restored insulin receptor phosphorylation and significantly reduced apoB secretion. In summary, we hypothesize that fructose feeding induces hepatic insulin resistance at least in part via an increase in expression of PTP-1B. Induction of hepatic insulin resistance may then contribute to reduced apoB degradation and enhanced VLDL particle assembly and secretion.  相似文献   

2.
A novel animal model of insulin resistance, the fructose-fed Syrian golden hamster, was employed to investigate the mechanisms mediating the overproduction of very low density lipoprotein (VLDL) in the insulin resistant state. Fructose feeding for a 2-week period induced significant hypertriglyceridemia and hyperinsulinemia, and the development of whole body insulin resistance was documented using the euglycemic-hyperinsulinemic clamp technique. In vivo Triton WR-1339 studies showed evidence of VLDL-apoB overproduction in the fructose-fed hamster. Fructose feeding induced a significant increase in cellular synthesis and secretion of total triglyceride (TG) as well as VLDL-TG by primary hamster hepatocytes. Increased TG secretion was accompanied by a 4.6-fold increase in VLDL-apoB secretion. Enhanced stability of nascent apoB in fructose-fed hepatocytes was evident in intact cells as well as in a permeabilized cell system. Analysis of newly formed lipoprotein particles in hepatic microsomes revealed significant differences in the pattern and density of lipoproteins, with hepatocytes derived from fructose-fed hamsters having higher levels of luminal lipoproteins at a density of VLDL versus controls. Immunoblot analysis of the intracellular mass of microsomal triglyceride transfer protein, a key enzyme involved in VLDL assembly, showed a striking 2.1-fold elevation in hepatocytes derived from fructose-fed versus control hamsters. Direct incubation of hamster hepatocytes with various concentrations of fructose failed to show any direct stimulation of its intracellular stability or extracellular secretion, further supporting the notion that the apoB overproduction in the fructose-fed hamster may be related to the fructose-induced insulin resistance in this animal model. In summary, hepatic VLDL-apoB overproduction in fructose-fed hamsters appears to result from increased intracellular stability of nascent apoB and an enhanced expression of MTP, which act to facilitate the assembly and secretion of apoB-containing lipoprotein particles.  相似文献   

3.
Insulin-resistant states are characterized by hypertriglyceridemia, predominantly because of overproduction of hepatic very low density lipoprotein particles. The additional contribution of intestinal lipoprotein overproduction to the dyslipidemia of insulin-resistant states has not been previously appreciated. Here, we have investigated intestinal lipoprotein production in a fructose-fed hamster model of insulin resistance previously documented to have whole body and hepatic insulin resistance, and hepatic very low density lipoprotein overproduction. Chronic fructose feeding for 3 weeks induced significant oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins in the fasting state and during steady state fat feeding, based on (a) in vivo Triton WR1339 studies of apoB48 production as well as (b) ex vivo pulse-chase labeling of intestinal enterocytes from fasted and fed hamsters. ApoB48 particle overproduction was accompanied by increased intracellular apoB48 stability, enhanced lipid synthesis, higher abundance of microsomal triglyceride transfer protein mass, and a significant shift toward the secretion of larger chylomicron-like particles. ApoB48 particle overproduction was not observed with short-term fructose feeding or in vitro incubation of enterocytes with fructose. Secretion of intestinal apoB48 and triglyceride was closely linked to intestinal enterocyte de novo lipogenesis, which was up-regulated in fructose-fed hamsters. Inhibition of fatty acid synthesis by cerulenin, a fatty acid synthase inhibitor, resulted in a dose-dependent decrease in intestinal apoB48 secretion. Overall, these findings further suggest that intestinal overproduction of apoB48 lipoproteins should also be considered as a major contributor to the fasting and postprandial dyslipidemia observed in response to chronic fructose feeding and development of an insulin-resistant state.  相似文献   

4.
High-carbohydrate diets reduce plasma low-density lipoprotein (LDL)-cholesterol but also provoke the appearance of an atherogenic lipoprotein profile (ALP). Characterized by high plasma triglyceride, small dense LDL, and reduced high-density lipoprotein (HDL) cholesterol, an ALP is associated with insulin resistance. Despite extensive use of the fructose-fed hamster as a model of insulin resistance, little is known about changes that occur in the physical properties of circulating lipoproteins. Therefore, we investigated the metabolic and physical properties of lipoproteins in hamsters fed high-carbohydrate diets of varying complexity (60% carbohydrate as chow, cornstarch, or fructose) for 2 wk. Hamsters fed the high-fructose diet showed significantly increased very- low-density lipoprotein (VLDL)-triglyceride (92.3%), free cholesterol (68.6%), and phospholipid (95%), whereas apolipoprotein B levels remained unchanged. Median diameter of circulating VLDL was larger in fructose-fed hamsters (63 nm) than in cornstarch-fed hamsters. Fructose feeding induced a 42.5% increase LDL-triglyceride concurrent with a 20% reduction in LDL-cholesteryl ester. Compositional changes were associated with reduced LDL diameter. In contrast, fructose feeding caused elevations in all HDL fractions. The physical properties of apolipoprotein-B-containing lipoprotein fractions are similar between fructose-fed hamsters and humans with ALP. However, metabolism of high-density lipoprotein appears to differ in the 2 species.  相似文献   

5.
We have reported previously that a cinnamon extract (CE), high in type A polyphenols, prevents fructose feeding-induced decreases in insulin sensitivity and suggested that improvements of insulin sensitivity by CE were attributable, in part, to enhanced insulin signaling. In this study, we examined the effects of CE on postprandial apolipoprotein (apo) B-48 increase in fructose-fed rats, and the secretion of apoB48 in freshly isolated intestinal enterocytes of fructose-fed hamsters. In an olive oil loading study, a water-soluble CE (Cinnulin PF, 50 mg/kg body weight, orally) decreased serum triglyceride (TG) levels and the over production of total- and TG-rich lipoprotein-apoB48. In ex vivo 35S labeling study, significant decreases were also observed in apoB48 secretion into the media in enterocytes isolated from fructose-fed hamsters. We also investigated the molecular mechanisms of the effects of CE on the expression of genes of the insulin signaling pathway [insulin receptor (IR), IR substrate (IRS)1, IRS2 and Akt1], and lipoprotein metabolism [microsomal TG transfer protein (MTP), sterol regulatory element-binding protein (SREBP1c) in isolated primary enterocytes of fructose-fed hamsters, using quantitative real-time polymerase chain reaction. The CE reversed the expression of the impaired IR, IRS1, IRS2 and Akt1 mRNA levels and inhibited the overexpression of MTP and SREBP1c mRNA levels of enterocytes. Taken together, our data suggest that the postprandial hypertriglycerides and the overproduction of apoB48 can be acutely inhibited by a CE by a mechanism involving improvements of insulin sensitivity of intestinal enterocytes and regulation of MTP and SREBP1c levels. We present both in vivo and ex vivo evidence that a CE improves the postprandial overproduction of intestinal apoB48-containing lipoproteins by ameliorating intestinal insulin resistance and may be beneficial in the control of lipid metabolism.  相似文献   

6.
Insulin-resistant states are commonly associated with both increased circulating levels of tumor necrosis factor (TNF)-alpha and hepatic overproduction of very low density lipoproteins (VLDL). Here, we provide evidence that increased TNF-alpha can directly stimulate the hepatic assembly and secretion of apolipoprotein B (apoB) 100-containing VLDL(1), using the Syrian golden hamster, an animal model that closely resembles humans in hepatic VLDL-apoB100 metabolism. In vivo TNF-alpha infusion for 4 h in chow-fed hamsters induced whole-body insulin resistance on the basis of euglycemic hyperinsulinemic clamp studies. Immunoprecipitation and immunoblotting analysis of livers from TNF-alpha-treated hamsters indicated decreased tyrosine phosphorylation of insulin receptor (IR)-beta, IR substrate-1 (Tyr), Akt (Ser(473)), p38, ERK1/2, and JNK but increased serine phosphorylation of IRS-1 (Ser(307)) and Shc. TNF-alpha infusion also significantly increased hepatic production of total circulating apoB100 and VLDL-apoB100 in both fasting and postprandial (fat load) states. Ex vivo experiments, using cultured primary hepatocytes from hamsters, also showed TNF-alpha-induced VLDL-apoB100 oversecretion, an effect that was blocked by TNF receptor 2 antibody. Unexpectedly, TNF-alpha decreased the sterol regulatory element-binding protein-1c mass and mRNA levels but significantly increased microsomal triglyceride transfer protein mass and mRNA levels in primary hepatocytes. In summary, these data provide direct evidence that TNF-alpha induces whole-body insulin resistance and impairs hepatic insulin signaling accompanied by overproduction of apoB100-containing VLDL particles, an effect likely mediated via TNF receptor 2.  相似文献   

7.
While considerable research has examined diminished insulin responses within peripheral tissues, comparatively little has been done to examine the effects of this metabolic disruption upon the CNS. The present study employed biochemical and electrophysiological assays of acutely prepared brain slices to determine whether neural insulin resistance is a component of the metabolic syndrome observed within the fructose-fed (FF) hamster. The tyrosine phosphorylation levels of the insulin receptor (IR) and insulin receptor substrate 1 (IRS-1) in response to insulin were significantly reduced within FF hamsters. Also, insulin-mediated phosphorylation of both residues necessary for activation of the serine-threonine kinase Akt/PKB, a key effector of insulin signaling, was markedly decreased. Elevated levels of the protein tyrosine phosphatase 1B, which dephosphorylates the IR and IRS-1, were also observed within the cerebral cortex and hippocampus of FF hamsters. Examination of whether a nutritionally induced compromise of neural insulin signaling altered synaptic function revealed a significant attenuation of insulin-induced long-term depression, but no effect upon either paired-pulse facilitation or electrically induced long-term potentiation. Collectively, our results demonstrate, for the first time, that nutritionally induced insulin resistance significantly affects the neural insulin signaling pathway, and suggest that brain insulin resistance may contribute to cognitive impairment.  相似文献   

8.
Differences in gender are in part responsible for the development of insulin resistance (IR) and associated hypertension. Currently, it is unclear whether these differences are dictated by gender itself or by the relative changes in plasma estrogen and/or testosterone. We investigated the interrelationships between testosterone and estrogen in the progression of IR and hypertension in vivo in intact and gonadectomized fructose-fed male rats. Treatment with estrogen significantly reduced the testosterone levels in both normal chow-fed and fructose-fed rats. Interestingly, fructose feeding induced a relative increase in estradiol levels, which did not affect IR in both intact and gonadectomized fructose-fed rats. However, increasing the estrogen levels improved insulin sensitivity in both intact and gonadectomized fructose-fed rats. In intact males, fructose feeding increased the blood pressure (140 +/- 2 mmHg), which was prevented by estrogen treatment. However, the blood pressure in the fructose-fed estrogen rats (125 +/- 1 mmHg) was significantly higher than that of normal chow-fed (113 +/- 1 mmHg) and fructose-fed gonadectomized rats. Estrogen treatment did not affect the blood pressure in gonadectomized fructose-fed rats (105 +/- 2 mmHg). These data suggest the existence of a threshold value for estrogen below which insulin sensitivity is unaffected. The development of hypertension in this model is dictated solely by the presence or absence of testosterone. In summary, the development of IR and hypertension is governed not by gender per se but by the interactions of specific sex hormones such as estrogen and testosterone.  相似文献   

9.
Ezetimibe is a cholesterol uptake inhibitor that targets the Niemann-Pick C1-like 1 cholesterol transporter. Ezetimibe treatment has been shown to cause significant decreases in plasma cholesterol levels in patients with hypercholesterolemia and familial hypercholesterolemia. A recent study in humans has shown that ezetimibe can decrease the release of atherogenic postprandial intestinal lipoproteins. In the present study, we evaluated the mechanisms by which ezetimibe treatment can lower postprandial apoB48-containing chylomicron particles, using a hyperlipidemic and insulin-resistant hamster model fed a diet rich in fructose and fat (the FF diet) and fructose, fat, and cholesterol (the FFC diet). Male Syrian Golden hamsters were fed either chow or the FF or FFC diet ± ezetimibe for 2 wk. After 2 wk, chylomicron production was assessed following intravenous triton infusion. Tissues were then collected and analyzed for protein and mRNA content. FFC-fed hamsters treated with ezetimibe showed improved glucose tolerance, decreased fasting insulin levels, and markedly reduced circulating levels of TG and cholesterol in both the LDL and VLDL fractions. Examination of triglyceride (TG)-rich lipoprotein (TRL) fractions showed that ezetimibe treatment reduced postprandial cholesterol content in TRL lipoproteins as well as reducing apoB48 content. Although ezetimibe did not decrease TRL-TG levels in FFC hamsters, ezetimibe treatment in FF hamsters resulted in decreases in TRL-TG. Jejunal apoB48 protein expression was lower in ezetimibe-treated hamsters. Reductions in jejunal protein levels of scavenger receptor type B-1 (SRB-1) and fatty acid transport protein 4 were also observed. In addition, ezetimibe-treated hamsters showed significantly lower jejunal mRNA expression of a number of genes involved in lipid synthesis and transport, including srebp-1c, sr-b1, ppar-γ, and abcg1. These data suggest that treatment with ezetimibe not only inhibits cholesterol uptake, but may also alter intestinal function to promote improved handling of dietary lipids and reduced chylomicron production. These, in turn, promote decreases in fasting and postprandial lipid levels and improvements in glucose homeostasis.  相似文献   

10.
The present study was undertaken to determine whether supplementation with polymethoxylated flavones (PMFs) could ameliorate the fructose-induced hypertriglyceridemia and other metabolic abnormalities associated with insulin resistance (IR) in hamsters. Following feeding with the fructose diet, hamsters were supplemented orally with PMF-L or PMF-H (62.5 and 125 mg/kg/day) for 4 weeks. Both PMF-treated groups showed a statistically significant (p<0.05) decrease in serum triglyceride (TG) and cholesterol levels compared to the fructose-fed control group. The fructose control group at the end of the study showed elevated serum insulin and impaired insulin sensitivity (glucose intolerance). On the other hand, PMF-supplemented groups showed a reversal in these metabolic defects, including a decrease in insulin level and an improvement in glucose tolerance. PMF supplementation also reduced TG contents in the liver and heart and was able to regulate adipocytokines by significantly suppressing TNF-alpha, INF-gamma, IL-1beta and IL-6 expression and increasing adiponectin in IR hamsters. The mechanism of PMF on the activation of peroxisome proliferator-activated receptors (PPAR) was also explored. PMF-H supplementation significantly increased PPARalpha and PPARgamma protein expression in the liver. This is the first report of positive effects of PMF on adipocytokine production and on PPAR expression in IR hamsters. This study suggests that PMF can ameliorate hypertriglyceridemia and its anti-diabetic effects may occur as a consequence of adipocytokine regulation and PPARalpha and PPARgamma activation.  相似文献   

11.
Hepatic insulin resistance and lipoprotein overproduction are common features of the metabolic syndrome and insulin-resistant states. A fructose-fed, insulin-resistant hamster model was recently developed to investigate mechanisms linking the development of hepatic insulin resistance and overproduction of atherogenic lipoproteins. Here we report a systematic analysis of protein expression profiles in the endoplasmic reticulum (ER) fractions isolated from livers of fructose-fed hamsters with the intention of identifying new candidate proteins involved in hepatic complications of insulin resistance and lipoprotein dysregulation. We have profiled hepatic ER-associated proteins from chow-fed (control) and fructose-fed (insulin-resistant) hamsters using two-dimensional gel electrophoresis and mass spectrometry. A total of 26 large scale two-dimensional gels of hepatic ER were used to identify 34 differentially expressed hepatic ER protein spots observed to be at least 2-fold differentially expressed with fructose feeding and the onset of insulin resistance. Differentially expressed proteins were identified by matrix-assisted laser desorption ionization-quadrupole time of flight (MALDI-Q-TOF), MALDI-TOF-postsource decay, and database mining using ProteinProspector MS-fit and MS-tag or the PROWL ProFound search engine using a focused rodent or mammalian search. Hepatic ER proteins ER60, ERp46, ERp29, glutamate dehydrogenase, and TAP1 were shown to be more than 2-fold down-regulated, whereas alpha-glucosidase, P-glycoprotein, fibrinogen, protein disulfide isomerase, GRP94, and apolipoprotein E were all found to be up-regulated in the hepatic ER of the fructose-fed hamster. Seven isoforms of ER60 in the hepatic ER were all shown to be down-regulated at least 2-fold in hepatocytes from fructosefed/insulin-resistant hamsters. Implications of the differential expression of positively identified protein factors in the development of hepatic insulin resistance and lipoprotein abnormalities are discussed.  相似文献   

12.
Two of the most potent vasoconstrictors, endothelin-1 (ET-1) and angiotensin II (Ang II), are upregulated in fructose hypertensive rats. It is unknown whether an interrelationship exists between these peptides that may contribute to the development of fructose-induced hypertension. The objective of this study was to investigate the existence of an interaction between the endothelin and renin angiotensin systems that may play a role in the development of fructose-induced hypertension. High fructose feeding and treatment with either bosentan, a dual endothelin receptor antagonist, or with L-158,809, an angiotensin type 1 receptor antagonist, were initiated simultaneously in male Wistar rats. Systolic blood pressure, fasted plasma parameters, insulin sensitivity, plasma Ang II, and vascular ET-1-immunoreactivity were determined following 6 weeks of high fructose feeding. Rats fed with a high fructose diet exhibited insulin resistance, hyperinsulinemia, hypertriglyceridemia, hypertension, and elevated plasma Ang II. Treatment with either bosentan or L-158,809 significantly attenuated the rise in blood pressure with no effect on insulin levels or insulin sensitivity in fructose-fed rats. Bosentan treatment significantly reduced plasma Ang II levels, while L-158,809 treatment significantly increased vascular ET-1-immunoreactivity in fructose-fed rats. Thus, treatment with the endothelin receptor antagonist prevented the development of fructose-induced hypertension and decreased plasma Ang II levels. These data suggest that ET-1 contributes to the development of fructose-induced hypertension through modulation of Ang II levels.  相似文献   

13.
High fructose feeding induces insulin resistance, impaired glucose tolerance, and hypertension in rats and mimics most of the features of the metabolic syndrome X. The effects of a 6-week treatment with the transition metals administered in drinking water, vanadium (VOSO4.5H2O, 0.75 mg/mL) or tungsten (Na2O4W, 2 g/mL), were investigated on the reactivity to norepinephrine (NEPI) or acetylcholine (ACh) of thoracic aorta rings isolated from fructose (60%) or standard chow fed rats. Maximal effect (Emax) and pD2 (-log EC50) values were determined in each case in the presence or absence of endothelium, while the degree of insulin resistance was determined using the euglycemic hyper insulinemic glucose clamp technique. Aortic segments isolated from 6-week fructose-fed animals were characterized by NEPI hyperresponsiveness (increase in Emax) and endothelium-dependent NEPI supersensitivity (increase in pD2) without any change in the reactivity to ACh. Vanadium or tungsten administered in fructose-fed animals prevented both hypertension and NEPI hyperresponsiveness, while vanadium, but not tungsten, reduced NEPI supersensitivity. Vanadium, but not tungsten, increased the relaxing activity of ACh, both in control and fructose-fed animals. Insulin resistance associated with high fructose feeding was reversed by vanadium but not by tungsten treatment. The differential effects of the two transition metals on vascular responsiveness to NEPI or ACh may be explained by their differential effects on insulin sensitivity.  相似文献   

14.
Cholesteryl ester transfer protein (CETP) plays a pivotal role in the reverse transport of cholesterol and in the remodeling of circulating lipoproteins. While plasma and adipose tissue levels of CETP are affected by a variety of metabolic conditions, the extent of the effects of dietary factors, other than high cholesterol feeding, are not well understood. To further explore this paradigm, male Golden Syrian hamsters were fed for 4 weeks with a 60%-enriched fructose diet (F) and were compared to a matched group of animals fed with a normal chow diet (N). After feeding for 4 weeks, plasma insulin concentrations were lower in animals fed fructose than in control animals (F: 3.3+/-0.8 vs N: 7.4+/-1.9 ng/mL; p<0.03), but there was no significant difference in plasma glucose concentrations between the two groups (F: 138+/-7 vs N: 148+/-10 mg/dL; p>0.05). Fructose-fed animals showed significant increases in plasma triglyceride (F: 269+/-22 vs N: 165+/-22 mg/dL; p<0.01) and plasma cholesterol (F: 150+/-10 vs N: 113+/-6 mg/dL; p<0.02) concentrations compared with control animals. Total CETP activity and immunoreactive mass were higher in the plasma of fructose-fed animals that in that of controls (F: 1036+/-70 vs N: 826+/-43 pmol/h/mL, p<0.04 and F: 24.5+/-3.1 vs N: 37.5+/-4.3 AU, p<0.02, respectively). Adipose tissue CETP mRNA levels, assessed by the very sensitive ribonuclease protection assay, were 53% higher in fructose-fed animals than in controls (F: 14.1+/-2.0 vs N: 9.2+/-1.0 AU over a rRNA control; p<0.04). Adipose tissue CETP activity and immunoreactive mass also showed a statistically significant increase in the fructose-fed hamsters compared with those fed a normal diet (p<0.04). In conclusion, fructose feeding in Syrian hamsters induces a mixed dyslipidemia. These metabolic changes are accompanied by a significant increase in CETP levels, both in plasma and in adipose tissue. This phenomenon suggests that the increase in the expression of adipose tissue CETP may be caused either by the ambient hypercholesterolemia resulting from fructose feeding or by an attenuation of a possible inhibitory effect of plasma insulin concentrations on the expression of adipose tissue CETP in this feeding paradigm.  相似文献   

15.
The current study assessed in vivo the effect of insulin on triglyceride-rich lipoprotein (TRL) production by rat liver. Hepatic triglyceride and apolipoprotein B (apoB) production were measured in anesthetized, fasted rats injected intravenously with Triton WR-1339 (400 mg/kg). After intravascular catabolism was blocked by detergent treatment, glucose (500 mg/kg) was injected to elicit insulin secretion, and serum triglyceride and apoB accumulation were monitored over the next 3 h. In glucose-injected rats, triglyceride secretion averaged 22.5 +/- 2.1 microg.ml(-1).min(-1), which was significantly less by 30% than that observed in saline-injected rats, which averaged 32.1 +/- 1.4 microg.ml(-1).min(-1). ApoB secretion was also significantly reduced by 66% in glucose-injected rats. ApoB immunoblotting indicated that both B100 and B48 production were significantly reduced after glucose injection. Results support the conclusion that insulin acts in vivo to suppress hepatic very low density lipoprotein (VLDL) triglyceride and apoB secretion and strengthen the concept of a regulatory role for insulin in VLDL metabolism postprandially.  相似文献   

16.
The objective of this study was to determine whether the effects of a fructose diet, which causes hyperinsulinemia, insulin resistance, and hypertension in male rats, are dependent on sex. Blood pressure was measured via the tail-cuff method, and oral glucose tolerance tests were performed to assess insulin sensitivity. Blood pressure in female rats did not differ between fructose-fed and control rats at any time point (126 +/- 5 and 125 +/- 3 mmHg at week 9 for fructose-fed and control rats, respectively) nor was there a difference in any metabolic parameter measured. Furthermore, the vascular insulin resistance that is present in male fructose-fed rats was not observed. After ovariectomy, fructose caused a significant change in systolic blood pressure from baseline compared with fructose-fed ovary-intact rats (change of 21 +/- 5 vs. -2 +/- 4 mmHg). The results demonstrate that females do not develop hypertension or hyperinsulinemia upon fructose feeding except after ovariectomy, suggesting that female sex hormones may confer protection against the effects of a fructose diet.  相似文献   

17.
A high fructose diet induces hypertension, hyperinsulinemia - insulin resistance, and hypertriglyceridemia (syndrome X). In this study, we investigated the role of an abnormal lipid profile in mediating fructose-induced hypertension. We hypothesized that bezafibrate, a lipid-lowering drug, would reduce elevated blood pressure and inhibit increased vascular reactivity in fructose-fed rats. Male rats were placed on four different diets: group 1 was fed standard chow (n = 6); group 2 was fed 60% fructose (n = 5); group 3 was fed fructose plus bezafibrate (30 mg x kg(-1) x day(-1); drinking water; n = 5); and group 4 was fed standard chow plus bezafibrate (n = 6). In addition, the direct effects of very low density lipoprotein (VLDL) on vascular reactivity were examined. Bezafibrate treatment lowered blood pressure, free fatty acids, and triglycerides in the fructose-fed group, suggesting that lipid abnormalities play a role in the elevation of blood pressure in the fructose-induced hypertensive rat. Aortae from fructose-fed rats were hyperresponsive to the calcium channel agonist Bay K 8644, which was normalized with bezafibrate treatment. Incubation of aortae in a VLDL medium resulted in increased responsiveness to Bay K 8644, lending further support to lipid abnormalities altering vascular reactivity. An altered lipid profile evidenced by elevated triglycerides and free fatty acids is causally related to the development of high blood pressure and increased vascular reactivity in the fructose-induced hypertensive rat.  相似文献   

18.
Abnormal lipid metabolism may be related to the increased cardiovascular risk in type 1 diabetes. Secretion and clearance rates of very low density lipoprotein (VLDL) apolipoprotein B100 (apoB) determine plasma lipid concentrations. Type 1 diabetes is characterized by increased growth hormone (GH) secretion and decreased insulin-like growth factor (IGF) I concentrations. High-dose IGF-I therapy improves the lipid profile in type 1 diabetes. This study examined the effect of low-dose (40 microg.kg(-1).day(-1)) IGF-I therapy on VLDL apoB metabolism, VLDL composition, and the GH-IGF-I axis during euglycemia in type 1 diabetes. Using a stable isotope technique, VLDL apoB kinetics were estimated before and after 1 wk of IGF-I therapy in 12 patients with type 1 diabetes in a double-blind, placebo-controlled trial. Fasting plasma triglyceride (P < 0.03), VLDL-triglyceride concentrations (P < 0.05), and the VLDL-triglyceride-to-VLDL apoB ratio (P < 0.002) significantly decreased after IGF-I therapy, whereas VLDL apoB kinetics were not significantly affected by IGF-I therapy. IGF-I therapy resulted in a significant increase in IGF-I and a significant reduction in GH concentrations. The mean overnight insulin concentrations during euglycemia decreased by 25% after IGF-I therapy. These results indicate that low-dose IGF-I therapy restores the GH-IGF-I axis in type 1 diabetes. IGF-I therapy changes fasting triglyceride concentrations and VLDL composition probably because of an increase in insulin sensitivity.  相似文献   

19.
20.
Dietary fructose has been suspected to contribute to development of metabolic syndrome. However, underlying mechanisms of fructose effects are not well characterized. We investigated metabolic outcomes and hepatic expression of key regulatory genes upon fructose feeding under well defined conditions. Rats were fed a 63% (w/w) glucose or fructose diet for 4 h/day for 2 weeks, and were killed after feeding or 24-hour fasting. Liver glycogen was higher in the fructose-fed rats, indicating robust conversion of fructose to glycogen through gluconeogenesis despite simultaneous induction of genes for de novo lipogenesis and increased liver triglycerides. Fructose feeding increased mRNA of previously unidentified genes involved in macronutrient metabolism including fructokinase, aldolase B, phosphofructokinase-1, fructose-1,6-bisphosphatase and carbohydrate response element binding protein (ChREBP). Activity of glucose-6-phosphate dehydrogenase, a key enzyme for ChREBP activation, remained elevated in both fed and fasted fructose groups. In the fasted liver, the fructose group showed lower non-esterified fatty acids, triglycerides and microsomal triglyceride transfer protein mRNA, suggesting low VLDL synthesis even though plasma VLDL triglycerides were higher. In conclusion, fructose feeding induced a broader range of genes than previously identified with simultaneous increase in glycogen and triglycerides in liver. The induction may be in part mediated by ChREBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号