首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Variability of expression of introduced marker genes was analysed in a large number of tobacco regenerants from anAgrobacterium-mediated transformation. In spite of standardization of sampling, considerable variation of GUS and NPTII expression was observed between individual transformants at different times of analysis and in different parts of the same plant. Organ-specificity of root versus leaf expression conferred by the par promoter from the haemoglobin gene ofParasponia andersonii in front of thegus gene showed a continuous spectrum. GUS expression in roots was found in 128 out of 140 plants; expression in leaves was found in 46 plants, and was always lower than in the corresponding roots. NPTII expression regulated by the nos promoter also showed a continuous spectrum. Expression levels were generally higher in roots than in leaves. Plants with high GUS expression in leaves showed high NPTII activity as well. A positive correlation between the level of NPTII expression and the numbers of integrated gene copies was noted. Chromosomal position effects and physiological determination are suggested as triggers for the variations. The transformed regenerated tobacco plants were largely comparable to clonal variants.  相似文献   

3.
Cysteine endopeptidases, SH-EP from Vigna mungo and EP-C1 from Phaseolus vulgaris, act to degrade seed storage protein during seed germination. Using transgenic tobacco plants, expression of SH-EP and promoter activity of the EP-C1 gene were analyzed in transgenic tobacco plants. The promoters of the two genes in tobacco seeds showed germination-specific activation, although post-translational processing of SH-EP and regulatory regions of promoter of the gene for EP-C1 were found to differ between leguminous seeds and transgenic tobacco seeds.  相似文献   

4.
5.
6.
7.
8.
Luo K  Zhang G  Deng W  Luo F  Qiu K  Pei Y 《Plant cell reports》2008,27(4):707-717
Previous studies have shown that mRNA and protein encoded by late embryogenesis-abundant (LEA) gene D113 from Gossypium hirsutum L. accumulate at high levels in mature seeds and also in response to abscisic acid (ABA) in young embryo. In this study, we studied the expression of four promoter 5′ deletion constructs (−1383, −974, −578 and −158) of the LEA D113 gene fused to beta-glucuronidase (GUS). GUS activity analysis revealed that the −578 promoter fragment was necessary to direct seed-specific GUS expression in transgenic tobacco plants (Nicotiana tabacum L.). To further investigate the expression pattern of LEA D113 promoter under environmental stresses, 2-week-old transgenic tobacco seedlings were exposed to ABA, dehydration, high salinity and cold treatments. GUS activity in the seedlings was quantified fluorimetrically, and expression was also observed by histochemical staining. An apparent increase in GUS activity was found in plants harboring constructs −1383, −974 and −578 after 24 h of ABA or high-salinity treatments, as well as after 10 days of dehydration. By contrast, only a slight increase was observed in all the three lines after cold treatment. Virtually no change in expression was found in construct −158 in response to dehydration, salinity and cold, but there was a moderate response to ABA, suggesting that the region between −574 and −158 was necessary for dehydration- and salinity-dependent expression, whereas ABA-responsive cis-acting elements might be located in the −158 region of the promoter.  相似文献   

9.
Plant non-specific lipid transfer proteins (nsLTPs) are encoded by a multigene family and support physiological functions, which remain unclear. We adapted an efficient ligation-mediated polymerase chain reaction (LM-PCR) procedure that enabled isolation of 22 novel Triticum aestivum nsLtp (TaLtp) genes encoding types 1 and 2 nsLTPs. A phylogenetic tree clustered the wheat nsLTPs into ten subfamilies comprising 1–7 members. We also studied the activity of four type 1 and two type 2 TaLtp gene promoters in transgenic rice using the β-Glucuronidase reporter gene. The activities of the six promoters displayed both overlapping and distinct features in rice. In vegetative organs, these promoters were active in leaves and root vascular tissues while no β-Glucuronidase (GUS) activity was detected in stems. In flowers, the GUS activity driven by the TaLtp7.2a, TaLtp9.1a, TaLtp9.2d, and TaLtp9.3e gene promoters was associated with vascular tissues in glumes and in the extremities of anther filaments whereas only the TaLtp9.4a gene promoter was active in anther epidermal cells. In developing grains, GUS activity and GUS immunolocalization data evidenced complex patterns of activity of the TaLtp7.1a, TaLtp9.2d, and TaLtp9.4a gene promoters in embryo scutellum and in the grain epicarp cell layer. In contrast, GUS activity driven by TaLtp7.2a, TaLtp9.1a, and TaLtp9.3e promoters was restricted to the vascular bundle of the embryo scutellum. This diversity of TaLtp gene promoter activity supports the hypothesis that the encoded TaLTPs possess distinct functions in planta.  相似文献   

10.
11.
12.
Two different genes encoding class II chitinases from peanut (Arachis hypogaea L. cv. NC4), A.h.Chi2;1 and A.h.Chi2;2, have been cloned. In peanut cell suspension cultures, mRNA levels of A.h.Chi2;2 increased after ethylene or salicylate treatment and in the presence of conidia from Botrytis cinerea. The second gene, A.h.Chi2;1, was only expressed after treatment with the fungal spores. Transgenic tobacco plants containing the complete peanut A.h.Chi2;1 gene exhibited essentially the same expression pattern in leaves as observed in peanut cell cultures. Expression characteristics of transgenic tobacco carrying a promoter-GUS fusion of A.h.Chi2;1 are described.  相似文献   

13.
A tapetum-specific gene, RTS, has been isolated by differential screening of a cDNA library from rice panicles. RTS is a unique gene in the rice genome. RNA blot analysis and in situ hybridization indicates that this gene is predominantly expressed in the anther’s tapetum during meiosis and disappears before anthesis. RTS has no introns and encodes a putative polypeptide of 94 amino acids with a hydrophobic N-terminal region. The nucleotide and deduced amino acid sequence of the gene do not show significant homology to any known sequences. However, a sequence in the promoter region, GAATTTGTTA, differs only by one or two nucleotides from one of the conserved motifs in the promoter region of two pollen-specific genes of tomato. Several other sequence motifs found in other anther-specific promoters were also identified in the promoter of the RTS gene. Transgenic and antisense RNA approaches revealed that RTS gene is required for male fertility in rice. The promoter region of RTS, when fused to the Bacillus amyloliquefaciens ribonuclease gene, barnase, or the antisense of the RTS gene, is able to drive tissue-specific expression of both genes in rice, creeping bentgrass (Agrostis stolonifera L.) and Arabidopsis, conferring male sterility to the transgenic plants. Light and near-infrared confocal microscopy of cross-sections through developing flowers of male-sterile transgenics shows that tissue-specific expression of barnase or the antisense RTS genes interrupts tapetal development, resulting in deformed non-viable pollen. These results demonstrate a critical role of the RTS gene in pollen development in rice and the versatile application of the RTS gene promoter in directing anther-specific gene expression in both monocotyledonous and dicotyledonous plants, pointing to a potential for exploiting this gene and its promoter for engineering male sterility for hybrid production of various plant species. Data deposition: The sequence reported in this paper have been deposited in the GeneBank database (Accession No. U12171)  相似文献   

14.
Summary Plasmodium species exhibit the unprecedented situation of distinct, stage-specific rRNA sequences. We present an analysis of two pairs of sequences of the small rRNA subunit (Plasmodium falciparum andPlasmodium berghei) and show that these genes do not evolve independently and that in fact their evolution is dominated by gene conversion. This analysis also shows that no extensive stage-specific sequences are conserved in the two species, thus rendering unlikely that the existence of stage-specific rRNA genes results from a requirement for distinct rRNA types.  相似文献   

15.
Summary We used in vitro growth inhibition assays to demonstrate that synthetic cecropin protein has potent activity against a range of plant pathogenic bacteria. We then prepared transgenic tobacco plants which express cecropin mRNA and protein. We have used Pseudomonas syringae pv tabaci infection of these transgenic tobacco as a model system to evaluate whether the plants which express cecropin protein also have increased tolerance to infection. We found no dramatic difference in disease response between plants which are expressing cecropin protein and control plants which were derived from the transformation with a binary vector which did not carry the gene encoding cecropin protein.  相似文献   

16.
Summary The trifunctional TRP1 gene from Neurospora crassa (N-TRP1) was subcloned into the yeast-Escherichia coli shuttle vector YEp13 and expressed in Saccharomyces cerevisiae. The three activities of the N-TRP1 gene product were detected in yeast mutants that lacked either N-(5-phosphoribosyl) anthranilate (PRA) isomerase or both the glutamine amidotransferase function of anthranilate synthase and indole-3-glycerol phosphate (InGP) synthase. The protein was detected on immunoblots only as the full length 83 kda product indicating that the trifunctional gene product was expressed in yeast primarily in a fully active, undegraded form. By placing the subcloned N-TRP1 gene under the control of the inducible PHO5 promoter from yeast, the expression of all three activities was increased to more than ten fold that of wild-type yeast and the overproduced protein could be visualized by SDS-polyacrylamide gel electrophoresis of crude extract and Coomassie Blue staining. Using the expression system described the effect of selective deletion of regions of the coding sequence of the N-TRP1 gene on expression of the three activities was tested. Expression of either the F- or C-domains, catalyzing respectively the PRA isomerase or InGP synthase activities, did not depend on the presence of the other domain in the active polypeptide. Furthermore, normal dimer formation occurred with a protein active for InGP synthase in a deletion derivative lacking most of the PRA isomerase domain, ruling out the hypothesis that interaction between the active site regions for PRA isomerase and InGP synthase accounted for dimer formation in the trifunctional product.Abbreviations PRA N-(5'-phosphoribosyl)anthranilate - InGP indole-3-glycerol phosphate - SDS sodium dodecyl sulfate  相似文献   

17.
18.
Summary To establish a genetic system for dissection of light-mediated signal transduction in plants, we analyzed the light wavelengths and promoter sequences responsible for the light-induced expression of the Arabidopsis thaliana chalcone synthase (CHS) promoter fused to the -glucuronidase (GUS) marker gene. Transgenic A. thaliana lines carrying 1975, 523, 186, and 17 by of the CHS promoter fused to the GUS gene were generated, and the expression of these chimeric genes was monitored in response to high intensity light in mature plants and to different wavelengths of light in seedlings. Fusion constructs containing 1975 and 523 by of CHS promoter sequence behaved identically to the endogenous CHS gene under all conditions. Expression of these constructs was induced specifically in response to high intensity white light and blue light. The response to blue light was seen in the presence of the Pfr form of phytochrome. Fusion constructs containing 186 by of promoter sequence showed reduced basal levels of expression and only weak stimulation by blue light but were induced significantly by high intensity white light. These analyses showed that the expression of the A. thaliana CHS gene is responsive to a specific blue light receptor and that sequences between — 523 and — 186 by are required for optimal basal and blue light-induced expression of this gene. The experiments lay the foundation for a simple genetic screen for light response mutants.  相似文献   

19.
20.
Inheritance of gusA and neo genes in transgenic rice   总被引:21,自引:0,他引:21  
Inheritance of foreign genes neo and gusA in rice (Oryza sativa L. cv. IR54 and Radon) has been investigated in three different primary (T0) transformants and their progeny plants. T0 plants were obtained by co-transforming protoplasts from two different rice suspension cultures with the neomycin phosphotransferase II gene [neo or aph (3) II] and the -glucuronidase gene (uidA or gusA) residing on separate chimeric plasmid constructs. The suspension cultures were derived from callus of immature embryos of indica variety IR54 and japonica variety Radon. One transgenic line of Radon (AR2) contained neo driven by the CaMV 35S promoter and gusA driven by the rice actin promoter. A second Radon line (R3) contained neo driven by the CaMV 35S promoter and gusA driven by a promoter of the rice tungro bacilliform virus. The third transgenic line, IR54-1, contained neo driven by the CaMV 35S promoter and gusA driven by the CaMV 35S.Inheritance of the transgenes in progeny of the transgenic rice was investigated by Southern blot analysis and enzyme assays. Southern blot analysis of genomic DNA showed that, regardless of copy numbers of the transgenes in the plant genome and the fact that the two transgenes resided on two different plasmids before transformation, the introduced gusA and neo genes were stably transmitted from one generation to another and co-inherited together in transgenic rice progeny plants derived from self-pollination. Analysis of GUS and NPT II activities in T1 to T2 plants provided evidence that inheritance of the gusA and neo genes was in a Mendelian fashion in one plant line (AR2), and in an irregular fashion in the two other plant lines (R3 and IR54-1). Homozygous progeny plants expressing the gusA and neo genes were obtained in the T2 generation of AR2, but the homozygous state was not found in the other two lines of transgenic rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号