首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contact sensitivity to trinitrophenyl (TNP) hapten was induced by subcutaneous (s.c.) administration of TNP-modified syngeneic spleen cells or epidermal cells (EC) (TNP-EC). Intraperitoneal (i.p.) inoculation of TNP-EC resulted in a comparable response, whereas i.p. administration of TNP-spleen cells or TNP-modified-ultraviolet (UV)-preirradiated EC (TNP-UV-EC) failed to induce TNP-contact sensitivity responses. The present study investigates the effect of UV-irradiation on the potential of EC for inducing the contact sensitivity response. Exposure of BALB/c mouse EC in vitro to 1600 J/m2 of UV-B before they were modified with TNP had no discernible effect on the Ia-positivity and viability of EC. Coexistence of TNP-UV-EC had no inhibitory effect upon the contact sensitivity response induced by TNP-EC via the i.p. route. The absence of suppressor cell generation was substantiated by the adoptive transfer of spleen cells from mice administered TNP-UV-EC i.p. to normal syngeneic mice. The effect of interleukin 1 (IL-1) or epidermal cell-derived thymocyte-activating factor (ETAF) in restoring the ability of TNP-UV-EC to induce contact sensitivity was examined. IL-1 or ETAF administered along with TNP-spleen cells i.p. induced a potent contact sensitivity response, whereas the same preparations of IL-1 or ETAF were unable to restore the contact sensitivity induction by TNP-UV-EC. The results are discussed in the context of UV-induced cell surface changes of the Langerhans cell population.  相似文献   

2.
Previous studies demonstrated that the initiation of murine delayed-type hypersensitivity (DTH), as exemplified by contact sensitivity induced by picryl chloride (PCI) or oxazolone (OX), is due to antigen-specific, T cell-derived, DTH-initiating factors called, respectively, PCl-F and OX-F. These factors participate in the extravascular recruitment of CD4+, Th-1, DTH effector T cells in the elicitation of DTH. Related factors also participate, together with nonantigen binding factors derived from CD8+ T cells, to constitute an antigen-specific T cell-derived suppressor factor (TsF) that can down regulate the ability of Th-1 effector T cells to mediate DTH. Since it was shown recently that athymic nude mice can make antigen-specific, DTH-initiating T cell factors, the current study tested whether nude mice also could produce the antigen-specific component of the TsF that suppresses DTH effector T cells. We found that antigen-specific factors from nu/nu mice could complement the nonantigen-binding subfactor produced in normal mice to constitute the whole antigen-specific TsF. Additional studies showed that the successful adoptive cell transfer of DTH-initiating T cell activity from nude mice into normal mice required cyclophosphamide treatment of the recipient. In contrast, transfer of DTH-initiating cell activity from nu/+ mice did not require cyclophosphamide treatment of the recipients. We hypothesized that nude mice lacked contrasuppressor cells. Although nude mice were able to manifest the early, initiating phase of DTH, we found that there was no suppression of early DTH-initiating T cells in nude mice, compared to nu/+. Therefore the production of DTH-initiating T cell factor could be boosted in nude mice. The ability to boost DTH-initiating cells in nude mice should facilitate the development of cell lines and clones with the ability to initiate DTH.  相似文献   

3.
Mice were fed the contact sensitizing agents “oxazolone” or picryl chloride by tube. A single feed gave rise to contact sensitivity. However, the contact sensitivity and antibody production which occurred in mice painted with oxazolone were almost abolished when the mice were fed oxazolone 14 days before the skin painting. Feeding also reduced the DNA synthesis response in the regional lymph nodes. Two types of suppressor cells were found in mice after feeding. After a single feed of picryl chloride the Peyer's patches and mesenteric lymph nodes contained suppressor cells which suppressed the passive transfer of contact sensitivity. After three feeds of either agent spleen cells also caused inhibition. These suppressor cells were presumptive B cells as shown by their ability to form rosettes with red cells coated with antibody and complement and their resistance to anti-θ serum and complement. However, separated T cells from the same spleen transferred contact sensitivity. In addition to these B suppressor cells the spleens and peripheral lymph node cells of mice fed with contact sensitizing agent and then painted on the skin contained T cells which limited DNA synthesis in lymph nodes. This was shown by injecting their cells into normal recipients which were then painted with contact sensitizing agent and measuring DNA synthesis 4 days later in the regional lymph nodes. It was concluded that suppressor B and T cells were an important part of the mechanism of unresponsiveness caused by feeding contact sensitizing agents.  相似文献   

4.
We studied the mode of action of the nonspecific T suppressor factor (nsTsF-1) made in the picryl (TNP) system when T acceptor cells armed with antigen-specific TsF are triggered by antigen in the context of I-J. This suppressor factor does not inhibit the passive transfer of contact sensitivity directly, as shown by its failure to inhibit passive transfer by immune cells deprived of I-A+ cells. Its immediate target is an immune, antigen-specific, Ly-1+2-, I-A+ T cell. This cell, which may be regarded as a T suppressor effector cell (Ts-eff-2), produces nsTsF-2 when exposed sequentially to nsTsF-1 and antigen. This nsTsF subsequently inhibits the passive transfer of contact sensitivity. The action of nsTsF-2 is MHC genetically restricted. As the nsTsF-2 bears I-A determinant(s), this raises the possibility that it may act by combining with the recognition site for I-A on the T cell that mediates contact sensitivity.  相似文献   

5.
Mice were immunized for contact sensitivity and antibody production by painting the skin with picryl chloride. Lymph node and spleen cells taken 4 days later transferred contact sensitivity. However, cells taken at 7–8 days failed to transfer but were able to block the transfer by 4 day immune cells. These suppressor cells occurred in the regional lymph nodes, spleen and thymus. The suppressor activity of lymph node and spleen cells was due to B cells as shown by the effect of anti-θ serum and complement, nylon wool filtration and separation of EAC positive and negative cells by centrifugation on a discontinuous gradient. The transfer of fractions rich or poor in macrophages showed that the suppressor cell in the transferred population was not a macrophage. Separation using EAC rosettes suggested that B cells were responsible for the suppressor activity in the thymus.T cells isolated from the lymph nodes and spleen 7–8 days after immunization transferred contact sensitivity although the initial population was inactive. This indicates that passive transfer cells are present in the regional lymph nodes and spleen at later times after immunization but cannot be demonstrated because of the presence of suppressor B cells. However, no passive transfer cells were found in the thymus. The production of B suppressor cells required little or no T cell help and following immunization the spleens of reconstituted (B) mice were at least as active as control cells in causing suppression. There are several different suppressor cells which act in the picryl system and the B suppressor cells in immunized mice described here are distinct from the T suppressor cells in mice injected with picryl sulphonic acid.  相似文献   

6.
Rabbits were immunized with TNP-specific Lyt-1+, 2- T cell-derived, antigen-binding proteins (PCI-F) released by T cells sensitized by skin painting with picrylchloride. The resulting antiserum (anti-PCI-F) bound to PCI-F and TNP-specific factors that suppressed delayed hypersensitivity (TSF) known to be comprised of PCI-F and Lyt-2+ -derived polypeptides released by cells sensitized by injection of trinitrobenzenesulfonic acid (TNBSF). Anti-PCI-F bound to T lymphocytes and 68,000 to 72,000 m.w. T cell surface proteins but not B cells on their surface proteins. Anti-PCI-F bound to both Lyt-1+ and Lyt-2+ T cells and surface proteins. A comparison of anti-PCI-F with anti-TSF indicates that anti-TSF contains specificity for Ly-2+ T cell-derived components of TSF and T cells not present in anti-PCI-F. The possibility of multiple isotypes of T cell receptors and antigen-binding molecules is discussed.  相似文献   

7.
Interactions between a T cell-derived, antigen-specific, contrasuppressor factor (TcsF) and immune T cells that block the action of T suppressor factors and allow the transfer of cellular immunity into tolerant recipients are described. Immune T cells from contact-sensitized donors are capable of transferring specific immunity into normal recipients but not into animals rendered tolerant to the specific antigen. Brief exposure of the immune cells to the TcsF enables the effective transfer of immunity into such tolerant recipients. In addition, treated immune cells become resistant to subsequent exposure to T suppressor factor (capable of inhibiting transfer of immunity to normal recipients). A cyclophosphamide-sensitive, I-J+, Ly-2 T transducer cell is required in the immune donor cell population for contrasuppression to be induced by the TcsF plus specific antigen. These cells release an antigen-non-specific contrasuppressive factor capable of rendering immune targets, depleted of transducer cells, resistant to suppression (either by suppressor factor or in the tolerant recipient). The results indicate that contrasuppression in contact sensitivity is antigen specific and that the balance of suppression and contrasuppression determines tolerance vs responsiveness in this system. The symmetrical resemblance of the contrasuppressive interactions to those of suppression in contact sensitivity are discussed.  相似文献   

8.
The T suppressor efferent circuit in the picryl (TNP) system, which inhibits the passive transfer of contact sensitivity, involves at least two antigen-nonspecific factors. The second nonspecific T suppressor factor (ns-2) bears I-A determinants of both the alpha and the beta chain as shown by affinity chromatography on immobilized anti-I-A monoclonal antibodies. Sequential absorption shows that the determinants of the alpha and beta chain occur on the same molecular complex. No absorption was obtained with anti-I-E antibody. There are two genetic restrictions associated with ns-2--the first is in its release from the second T suppressor efferent cell (on exposure to antigen) and the second is in its inhibitory interaction with its target cell. Both are MHC restricted and matching in I-A (but not I-E, or I-J) is sufficient. The question was asked whether the I-A of the ns-2 was directly responsible for the I-A genetic restriction in its action. F1 TsF was made in (H-2k X H-2b)F1 mice by injecting picrylated parental cells intravenously and triggering the release of ns-2 with the corresponding picrylated parental cells. Both I-Ak- and I-Ab-positive ns-2 were produced and were separated by affinity chromatography on immobilized anti-I-A monoclonal antibody. The I-A phenotype of these separated ns-2 of F1 origin determines the genetic restriction in their action; i.e., I-Ak+ ns-2 only inhibits passive transfer by H-2k cells and I-Ab+ ns-2 only acts on H-2b cells. In contrast, the I-A haplotype of the picrylated cell used to induce the Ts cell which makes ns-2 is unimportant. It was concluded that the I-A on the ns-2, and not a possible recognition site for I-A, serves as a restriction element. This finding suggests that ns-2 may act directly on the I-A-restricted T cell which mediates contact sensitivity.  相似文献   

9.
Recognition that delayed-type hypersensitivity (DTH) reactions, such as contact sensitivity (CS) in mice, are initiated by Ly-1+ T cell-derived, antigen-specific factors has led to identification of a new kind of suppressor T cell that regulates this initiation phase of CS. Regulation by these suppressor T cells is T cell isotype-like in that initiation of DTH of various antigenic specificities is suppressed, whereas, Ly-1+ T cells mediating the antigen/major histocompatibility complex-restricted, classic delayed phase of CS responses are not affected, nor are other T cell activities. This study shows that these isotype-specific suppressor T cells probably act by release of soluble, isotype-specific, suppressor factors. These isotype-specific T cell factors bind to and can be eluted from columns linked with antigen-specific Ly-1+ T cell factors that initiate CS, and are of different antigen specificities. These T cell regulating, anti-isotypic suppressor factors are derived from Lyt-2+ I-J- T cells and suppress CS-initiating T cells, but do not affect the delayed-acting T cells of CS. This is in contrast with antigen-specific T cell suppressor factors that affect the late-acting and not the early-acting T cells of CS. It is suggested that the antigen-binding, CS-initiating, T cell factors, and their regulatory, anti-isotypic T cell factors are, respectively, T cell analogues of immunoglobulin(Ig)E antibody, and IgE-binding factors, that regulate IgE antibody production by IgE+ B cells.  相似文献   

10.
A single injection of TNP-labeled mouse gamma-globulin (TNP-IgG) can render the contact sensitivity response of mice resistant to suppressor cells (Tsc) and their biologically active cellfree products (TsF). Lyt-1 T cells of mice treated with TNP-IgG can protect the adoptive contact sensitivity response of immune cells from the antigen-specific suppressive effect produced by the addition of antigen-specific TsF or Tsc. When T cells of TNP-IgG-treated mice are put into culture, they produce an antigen-specific contrasuppressor factor (TcsF) that can replace the activity of the cells. When immune cells are preincubated in vitro with TcsF, they become refractory to Tsc and TsF added subsequently. The TcsF, however, has no ability to restore responsiveness to immune cells that had been previously exposed to TsF. The TcsF binds specifically to TNP, expresses an I-J-controlled determinant, and does not express standard determinants found on mouse Ig. The treatment that primes the contrasuppressor system to protect the contact sensitivity response also reportedly renders the antibody-producing system tolerant, (i.e., produces so called "split tolerance"). These results are discussed in light of the possibility that the contrasuppressor system can be responsible for so called isotype-specific immunity by rendering one arm of the immune system resistant to generalized suppressive mechanisms.  相似文献   

11.
Mice injected with antigen (picrylated spleen cells) intravenously fail to develop contact sensitivity. However, contact sensitivity occurs if these mice are injected with IL-2. This effect of IL-2 was reproduced in vitro by taking spleen cells 2 days after injecting antigen intravenously and culturing them with either 150 u/ml recombinant IL-2 for 2 days or by pulsing with 600-1200 u/ml IL-2 at 4 degrees C for 1 hr. After 2 days in culture these antigen-exposed cells transfer contact sensitivity to naive recipients in a 24-hr experiment. However, the ability of antigen-exposed cells, pulsed with IL-2, to transfer contact sensitivity is abolished when they are incubated with unpulsed antigen-exposed cells and as few as 1/16 of their number have a significant effect. This phenomenon is specific, as normal cell or cells from mice injected with oxazolonated cells intravenously have no effect. The suppressor cells were Thy-1+, Lyt-1-, 2+, I-J+ T cells. It was concluded that IL-2 prevents the development/action of antigen-specific T suppressor cells.  相似文献   

12.
BDF1 mice were given three i.v. injections of ovalbumin (OA) to induce antigen-specific suppressor T cells. Incubation of spleen cells of OA-treated mice with homologous antigen resulted in the formation of IgE-suppressive factor. This factor was not derived from antigen-specific suppressor T cells, but suppressor T cells were essential for determining the nature of IgE-binding factors formed. In the spleen cells of OA-treated mice, antigenic stimulation of antigen-primed Lyt-1+ (helper) T cells resulted in the formation of inducers of IgE-binding factor, whereas Lyt-2+, I-J+ T cells released glycosylation-inhibiting factor (GIF), and these two factors, in combination, induced unprimed Lyt-1+ T cells to form IgE-suppressive factor. The role of GIF is to inhibit the assembly of N-linked oligosaccharides on IgE-binding factors during their biosynthesis, and thereby provide them with a biologic activity: suppression of the IgE response. Under the experimental conditions employed, GIF was released spontaneously from antigen-specific suppressor T cells. However, antigenic stimulation of the cells enhanced the release of the factor. GIF from antigen-specific suppressor T cells has a m.w. of 25,000 to 30,000, as estimated by using gel filtration, binds to anti-I-J alloantibodies and to a monoclonal antibody specific for lipomodulin, and has affinity for specific antigen. The possible relationship between antigen-specific GIF and antigen-specific suppressor factors is discussed.  相似文献   

13.
Ts cells from mice tolerized with dinitrobenzene sulfonate produce a DNP-specific, MHC-restricted soluble suppressor factor (SSF) which regulates contact sensitivity to 2,4-dinitro-fluorobenzene. Previous studies have shown that the SSF-producing T cells and the soluble factor have the same hapten/MHC specificity suggesting that SSF may represent a secreted form of the Ts membrane receptor. The relationship between TCR proteins and SSF was investigated by examining the structural and serologic properties of a monoclonal DNP/H-2Kd-specific suppressor molecule produced by a Ts hybridoma. Reduction followed by alkylation abrogated the ability of the 3-10 molecule to inhibit transfer of contact sensitivity to 2,4-dinitro-fluorobenzene, indicating that intact disulfide bonds were a required structural property for suppression. Reduction of the 3-10 molecule followed by affinity chromatography on DNP-coupled Sepharose beads indicated that the 3-10 suppressor molecule is a dimer and that one of its chains binds to cell-free DNP. Serologic properties of the 3-10 molecule were examined by determining the ability of pan-reactive rabbit anti-TCR antibodies and anti-V beta 8 mAb KJ16.133 and F23.1 to adsorb suppressor activity from 3-10 culture supernatant and affinity purified 3-10 ascites material. All three reagents adsorbed the suppressor activity whereas control antibodies had no effect. When 3-10 material was passed through a F23.1-conjugated Sepharose affinity column, suppressor activity was recovered in the column eluate but not in the effluent fraction. When the 3-10 molecule was reduced and separated into its two chains (i.e., DNP-binding and non-DNP-binding chains), it was found that the anti-V beta 8 antibody F23.1-bound to the non-DNP-binding chain of the suppressor molecule. Collectively, these results indicate that the monoclonal 3-10 suppressor molecule is structurally similar to the alpha/beta TCR and suggest that the 3-10 molecule expresses a determinant encoded by the V beta 8 family of TCR genes. These results are consistent with our hypothesis that these suppressor molecules represent a secreted form of the TCR expressed on the surface of the DNP-specific Ts.  相似文献   

14.
Induction in mice of marked photoallergic contact dermatitis (PCD) to 3,3',4',5-tetrachlorosalicylanilide (TCSA) with UVA (320 to 400 nm) radiation requires pretreatment with cyclophosphamide (CY). Attempts to induce photoallergic contact dermatitis without CY result in only a small degree of sensitivity, accompanied by significant net splenic suppressor cell activity. These suppressor cells are antigen specific, inhibit the induction but not the elicitation of photoallergic contact dermatitis to TCSA, and are T lymphocytes. Exposure of mice to UVB (280 to 320 nm) radiation at a site distant from that of sensitization, before CY administration and sensitization, inhibits the development of photoallergic contact dermatitis. This is analogous to the suppression of allergic contact dermatitis (ACD) observed in mice after exposure to UVB radiation; such suppression is accompanied by the formation of antigen-specific splenic suppressor cells. However, in contrast to the findings with allergic contact dermatitis, splenic suppressor cells are not detected in mice that are treated with UVB radiation before CY administration and sensitization to TCSA. This is presumably because CY prevents their formation. This provides evidence that UVB-irradiated mice have a second form of anergy that is not mediated by suppressor cells.  相似文献   

15.
Picryl (trinitrophenyl) chloride (PCL) contact sensitization of mice induces T cells that release an antigen-binding T cell factor (PCLF) that plays an important role in the initiation of contact sensitivity responses, in part via activation of mast cells. The current study employs an in vitro indirect rosette assay to demonstrate that PCLF can interact with the mast cell surface. Sheep red blood cells (SRBC) were hapten conjugated with trinitrophenyl (TNP), dinitrophenyl (DNP), or oxazolone (OX). When TNP-conjugated SRBC were coated with PCLF, monoclonal anti-DNP IgE, or anti-DNP IgG1, they produced 40 to 50% rosettes with purified normal mouse peritoneal mast cells. Analogous antigen-binding factors, from lymphoid cells of OX and dinitrofluorobenzene contact-sensitized mice, gave similar mast cell rosetting levels with OX-SRBC and DNP-SRBC, respectively. PCLF demonstrated a high degree of hapten specificity in that it formed rosettes with TNP-SRBC but not with DNP-SRBC, unlike IgE and IgG1, or DNPF, which formed rosettes with either SRBC type. Similarly, soluble TNP-BSA could inhibit PCLF rosette-forming capacity, but soluble DNP-BSA could not. In addition to mouse mast cells, PCLF formed rosettes with rat basophil leukemia cells, mouse peritoneal exudate macrophages, mouse alveolar macrophages, and J 774 cultured mouse macrophages; it did not form rosettes with rat mast cells, rat alveolar macrophages, or mouse spleen cells. Thus, PCLF-formed rosettes were antigen specific, relatively species specific, and mast cell/macrophage specific. PCLF-mediated rosette-forming activity could be detected in the presence of nanogram quantities of PCLF. More than 10 times greater IgE was needed to produce IgE-mediated rosettes. Reduction and alkylation eliminated the rosetting activity of IgE, but the rosetting activity of PCLF was not affected. PCLF, but not IgE rosette-forming activity, could be removed by and eluted from affinity columns linked with a monoclonal antibody specific for T cell-derived antigen-binding factors, whereas PCLF rosetting activity was not retained by an anti-immunoglobulin affinity column. Preincubation of mast cells with rat myeloma IgE or mouse monoclonal IgE of various specificities blocked IgE rosettes but not PCLF-induced rosettes. Other immunoglobulin isotypes likewise did not block PCLF rosettes. However, PCLF rosettes could be blocked by preincubation of mast cells with OX factor (OXF),and OXF-mediated rosettes could be blocked similarly by PCLF. These results suggest that the antigen-binding T cell factor PCLF interacts with a unique receptor on the surface of mouse mast cells.  相似文献   

16.
To study further soluble factors which regulate contact sensitivity (CS) to 2,4-dinitrofluorobenzene (DNFB), hapten-primed spleen cells from BALB/c mice were used to make T-cell hybridomas. A hybrid constitutively producing a suppressor factor was identified and cloned (clone 3-10). Incubation of BALB/c DNFB immune lymph node cells (LNC) in the 3-10 supernatant suppressed the ability of the immune cells to transfer CS to DNFB. The passive transfer of CS to oxazalone or to 2,4,6-trinitrochlorobenzene (TNCB) was not suppressed by the 3-10 factor. The hapten specificity of the 3-10 factor further was demonstrated by the ability of DNFB immune LNC but not LNC from unsensitized or from TNCB-sensitized mice to absorb the factor. The 3-10 factor also was adsorbed by DNFB-immune LNC from mice that were syngeneic with BALB/c mice at the K locus of the MHC (e.g., B10.D2 and D2.GD). Pretreatment of DNFB-immune LNC with monoclonal anti-Kd antibody or with anti-DNP antibodies blocked the ability to adsorb the factor. These results indicated that the 3-10 suppressor factor binds to DNP/H-2Kd complexes on immune LNC. Nylon wool-purified T cells (83% Thy-1.2+) from DNFB-immune LNC were able to adsorb the factor as well as unseparated immune LNC. Furthermore, treatment of immune LNC with anti-Thy-1.2 plus C' abrogated the ability of the cells to adsorb the factor, indicating that the cellular target of the 3-10 factor is a T cell. In addition, treatment of the immune LNC with an autoantiidiotypic antiserum (CS 231) plus C', which depletes DNP-specific delayed-type hypersensitivity effector T (TDH) cells, also abrogated the ability of the cells to adsorb the factor. Finally, the suppressor factor was adsorbed and eluted from DNP affinity columns but was not adsorbed by TNP affinity columns. Collectively, these results indicate that although the monoclonal 3-10 suppressor factor has affinity for DNP, focusing of the factor on the TDH cells requires recognition of DNP in the context of the appropriate MHC determinant, Kd.  相似文献   

17.
The subcutaneous administration of trinitrophenyl (TNP)-coupled syngeneic cells 7 days before co-culture with TNP-coupled syngeneic stimulator cells results in increased cytolytic activity. This augmented cytotoxic response has been shown to be dependent, at least partially, on radioresistant "helper" T cells. In this paper we have demonstrated that TNBS-generated suppressor T cells that are capable of suppressing contact sensitivity can specifically suppress the augmented response seen after subcutaneous priming. The i.v. administration of TNP-coupled cells results in priming of the recipient; however, if cells from these animals are transferred to a second recipient, there is evidence of suppressor activity. Thus, the cytotoxic T lymphocyte response is controlled by the same type of complex interactions previously demonstrated for humoral and delayed-type hypersensitivity responses.  相似文献   

18.
Considerable information concerning the serology and biochemistry of antigen-specific, T cell-derived suppressor factors has been obtained with the use of T cell hybridomas as a source of homogeneous material. Similarly, knowledge of helper T cell products and receptors is accumulating from studies of helper T cell clones and hybridomas. Our strategy for studying the mechanisms by which suppressor factors inhibit responses was to determine whether monoclonal suppressor factors could inhibit antibody responses specific for L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in cultures containing unprimed splenic B cells, macrophages, and GAT-specific T cell clones as a source of helper activity. The MHC-restricted, two chain suppressor factors, GAT-TsF2, inhibited these responses if the helper T cell clones and suppressor factor were derived from H-2-compatible mice. Furthermore, responses were inhibited by briefly pulsing T cell clones with GAT-TsF2 in the presence of GAT, indicating that suppressor factors need not be present continuously. In addition, helper T cell clones adsorbed syngeneic, but not allogeneic, GAT-TsF2 in the presence of GAT. Adsorption also requires a shared antigenic specificity between the H-2b-derived helper T cells and TsF2 factor. Thus, helper T cells can serve as the cellular target of antigen-specific, MHC-restricted GAT-TsF2, and cloned helper T cells can be used as a homogeneous target population for analysis of the molecular mechanisms of T cell suppression.  相似文献   

19.
The first detectable suppressor T cell (Ts) arising after i.v. administration of azobenzenearsonate- (ABA) conjugated syngeneic spleen cells to A/J mice has been studied for its receptor specificity and ability to produce soluble suppressor factor(s). This cell, termed Ts1, has a specific receptor for the eliciting antigen ABA, as demonstrated by selective binding to ABA protein- but not TNP protein-coated plastic dishes. The activity of ABA-Ts1 can be abrogated by treatment with anti-idiotypic antibodies made against anti-ABA antibodies of A/J mice (anti-CRI), indicating that these ABA-binding cells possess a surface receptor structure sharing idiotypic determinants with antibodies of the same specificity. Finally, soluble extracts from, antigen-adherent ABA-Ts1, but not nonadherent cells from the same spleen cell population, possess suppressive activity when assayed directly for afferent suppression or tested for their ability to trigger a second population of Ts (Ts2) in naive recipients. These findings demonstrate a close concordance between a T cell surface receptor, soluble T suppressor factors, and B cell derived antibody, all capable of direct recognition of the eliciting ABA antigen.  相似文献   

20.
Spleen cells from DBA/2 mice that received a single feeding of 20 mg of ovalbumin (OVA) 7 days previously were specifically hyporesponsive to primary in vitro challenge with the thymic-dependent antigen TNP-polymerized ovalbumin (TNP-POL-OVA). The tolerance observed in spleen cells from OVA-fed animals was dependent upon OVA-specific T suppressor cells, because splenic T cells from OVA-fed mice suppressed the primary response to TNP-POL-OVA of cultures containing normal T and B cells. The tolerance and suppression was OVA specific, because spleen cells from OVA-fed animals responded well to other antigens (including TNP on another carrier), and splenic T cells from OVA-fed mice did not affect the response of normal T and B cells to sheep erythrocytes. These data confirm the existence of T suppressor cells after OVA feeding and provide a direct means of assaying their activity in a primary in vitro response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号