首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
3.
4.
5.
The corpus luteum (CL) is a transient endocrine organ. Development, maintenance, and regression of CL are effectively controlled by dynamic changes in gene expression. However, it is unknown what types of gene are affected during the CL life span of the estrous cycle in bovine. Here, we determined whether unfolded protein response (UPR) signaling via eIF2α/ATF4/GADD34, p90ATF6/p50ATF6, and IRE1/XBP1, which is a cellular stress response associated with the endoplasmic reticulum (ER), is involved in the bovine CL life span. Our results indicated that expression of Grp78/Bip, the master UPR regulator, was increased during the maintenance stage and rapidly decreased at the regression stage. Additionally, UPR signaling pathways genes were found to be involved in luteal phase progression during the estrous cycle. Our findings suggested that Grp78/Bip, ATF6, and XBP1 act as ER chaperones for initiating CL development and maintaining the CL. In addition, we investigated whether ER stress-mediated apoptosis is occurred through three UPR signaling pathways in CL regression stage. Interestingly, pIRE1 and CHOP were found to be involved in both the adaptive response and ER stress-mediated apoptosis. During the CL regression stage, increased expression of pJNK and CHOP, two components of ER stress-mediated apoptotic cascades, occurred before increased level of cleaved caspase 3 were observed. The present investigation was performed to identify a functional link between UPR signaling and CL life span during the bovine estrous cycle. Taken together, results from this study demonstrated that UPR protein/gene expression levels were different at various stages of the bovine CL life span. Variations in the expression of these protein/genes may play important roles in luteal stage progression during the estrous cycle.  相似文献   

6.
7.
8.
9.
10.
The non-canonical splicing of XBP-1 mRNA is a hallmark of the mammalian unfolded protein response (UPR). The proteasomal degradation of unspliced XBP-1 (XBP-1u) facilitates the termination of the UPR. Thus, understanding the mechanism of XBP-1u degradation may allow control over UPR duration and intensity.We show that XBP-1u interacts with purified 20S proteasomes through its unstructured C-terminus, which leads to its degradation in a manner that autonomously opens the proteasome gate. In living cells, the C-terminus of XBP-1u accumulates in aggresome structures in the presence of proteasome inhibitors. We propose that direct proteasomal degradation of XBP-1u prevents its intracellular aggregation.

Structured summary

MINT-7302217: XBP1-u (uniprotkb:P17861-1) binds (MI:0407) to Proteasome subunit alpha 7.2 (uniprotkb:O14818) by pull down (MI:0096)MINT-7302148: Vimentin (uniprotkb:P08670) and XBP1-u (uniprotkb:P17861-1) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7302163: XBP1-u (uniprotkb:P17861-1) binds (MI:0407) to Proteasome subunit alpha 5 (uniprotkb:P28066) by pull down (MI:0096)MINT-7302186: XBP1-u (uniprotkb:P17861-1) binds (MI:0407) to Proteasome subunit alpha 6 (uniprotkb:P60900) by pull down (MI:0096)  相似文献   

11.
In vitro expansion of mesenchymal stem cells (MSCs) has been implicated in loss of multipotency, leading to impaired chondrogenic potential and an eventual therapeutic effect, as reported in our previous study. However, the precise regulatory mechanism is still unclear. Here, we demonstrate that endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) were involved in transformation of MSCs induced by in vitro culture based on the comparative profiling of in vitro cultured bone marrow MSCs at passage 3 (P3 BMSCs) vs. fresh P0 BMSCs by microarray analysis. Indeed, RT-PCR and Western blot analysis showed significantly lower expression levels of three key UPR-related molecules, ATF4, ATF6 and XBP1, in P3 BMSCs than P0 BMSCs. Further, we found that UPR suppression by 4-phenylbutyrate (4-PBA) reduced the chondrogenic potential of P0 BMSCs and further cartilage regeneration. Conversely, UPR induction by tunicamycin (TM) enhanced the chondrogenic differentiation of P3 BMSCs and the therapeutic effect on cartilage repair. Thus, the decline in the chondrogenic potential of stem cells after in vitro culture and expansion may be due to changes in ER stress and the UPR pathway.  相似文献   

12.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:1,自引:0,他引:1  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性。实验结果表明:在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的。总之,实验结果可提示HCVNS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应。NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中。  相似文献   

13.
14.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

15.
16.
The unfolded protein response (UPR) is activated as a consequence of alterations to ER homeostasis. It upregulates a group of ER chaperones and cochaperones, as well as other genes that improve protein processing within the secretory pathway. The UPR effector ATF6α augments—but is not essential for—maximal induction of ER chaperones during stress, yet its role, if any, in protecting cellular function during normal development and physiology is unknown. A systematic analysis of multiple tissues from Atf6α−/− mice revealed that all tissues examined were grossly insensitive to loss of ATF6α. However, combined deletion of ATF6α and the ER cochaperone p58IPK resulted in synthetic embryonic lethality. These findings reveal for the first time that an intact UPR can compensate for the genetic impairment of protein folding in the ER in vivo. The also expose a role for p58IPK in normal embryonic development.  相似文献   

17.
Type-2 diabetes mellitus (T2D) represents an important metabolic disorder, firmly connected to obesity and low level of chronic inflammation caused by deregulation of fat metabolism. The convergence of chronic inflammatory signals and nutrient overloading at the endoplasmic reticulum (ER) leads to activation of ER-specific stress responses, the unfolded protein response (UPR). As obesity and T2D are often associated with impaired wound healing, we investigated the role of UPR in the pathologic of diabetic-impaired cutaneuos wound healing. We determined the expression patterns of the three UPR branches during normal and diabetes-impaired skin repair. In healthy and diabetic mice, injury led to a strong induction of BiP (BiP/Grp78), C/EBP homologous protein (CHOP) and splicing of X-box-binding protein (XBP)1. Diabetic-impaired wounds showed gross and sustained induction of UPR associated with increased expression of the pro-inflammatory chemokine macrophage inflammatory protein (MIP)2 as compared to normal healing wounds. In vitro, treatment of RAW264.7 macrophages with tunicamycin, and subsequently stimulation with lipopolysaccharide (LPS) and interferon (IFN)-γ enhances MIP2 mRNA und protein expression compared to proinflammatory stimulation alone. However, LPS/IFNγ induced vascular endothelial growth factor (VEGF) production was blunted by tunicamycin induced-ER stress.  相似文献   

18.
19.
20.
Cystic fibrosis (CF) is the most common Caucasian autosomal recessive disease. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, which is a chloride (Cl(-)) channel. The most common mutation leads to a missing phenylalanine at position 508 (DeltaF508). The DeltaF508-CFTR protein is misfolded and retained in the endoplasmic reticulum and may trigger the unfolded protein response (UPR). Furthermore, CF is accompanied by inflammation and infection, which are also involved in the UPR. To date, the UPR transducer ATF6 and ER stress sensor Grp78 have been used as UPR markers. Therefore, our aim was to study the activation of ATF6 and Grp78 in transfected human epithelial cells expressing the DeltaF508-CFTR protein, and we showed that they are activated in these cells. We investigated the effect of exogenous UPR inducers thapsigargin (Tg) and tunicamycin (Tu) on Grp78 and ATF6 expression. Whereas the cells reacted to the UPR induction, we show a difference in the electrophoretic pattern of ATF6. The Grp78/ATF6 complex was previously described, but its stability during UPR is controversial. Using co-immunoprecipitation we show that it is stable in DeltaF508-CFTR-expressing cells and is maintained under UPR conditions. Finally, using siRNA, we show that decreased ATF6 expression induces increased cAMP-dependent halide flux through DeltaF508-CFTR due to its increased membrane localization. Therefore, our results suggest that UPR may be triggered in CF and that ATF6 may be a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号