首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose tissue expresses a variety of genes including tumor necrosis factor alpha and type-1 plasminogen activator inhibitor (PAI-1); and these factors, produced by adipocytes, may be associated with the risk of coronary events in obesity. In this study, we characterized the production of fibrinolytic factors including tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PAI-1 in the differentiation of preadipocytes, and examined the hormonal regulation of these fibrinolytic factors in mature adipocytes. Mouse 3T3-L1 preadipocytes were employed as a model of adipocytes. Adipocyte differentiation was induced by insulin, dexamethasone, and 3-isobutyl-1-methyl xanthine (IBMX). alpha-Glycerophosphate dehydrogenase (GPDH) activity and glucose transporter 4 (GLUT4) mRNA, indices for adipocyte maturation, were induced on Day 4, and gradually increased. GPDH activity reached its maximum level on Day 14. The level of tPA, a major PA in preadipocytes, dramatically decreased with differentiation. On the other hand, that of uPA reciprocally increased. PAI-1 production was also dramatically induced concomitant with differentiation. In mature adipocytes, uPA production was dominant (25 microg/ml/24 h vs. 0.8 microg/ml/24 h for tPA). Total PA activity in the mature adipocytes was reduced by insulin or dexamethasone, but not by glucagon. Insulin, IBMX, and dexamethasone significantly decreased both uPA and tPA production, and increased PAI-1 production. Glucagon had no effect on the production of these fibrinolytic factors. Our results reveal that uPA is one of the markers for the differentiation of 3T3-L1 cells and that insulin, IBMX, and dexamethasone are potent regulators of the fibrinolytic activity in differentiated 3T3-L1 cells, reciprocally affecting PA and PAI-1 levels in them.  相似文献   

2.
The urokinase-type plasminogen activator system is a proteolytic system involved in tissue remodeling and cell migration. At the cell surface, receptor (uPAR)-bound urokinase (uPA) binds its inhibitor PAI-1, localized in the matrix, and the complex is internalized by endocytic receptors, such as the low-density lipoprotein receptor-related protein (LRP). We previously proposed a nonproteolytic role for the uPA system in human myogenic cell differentiation in vitro, i.e., cell fusion, and showed that myogenic cells can use PAI-1 as an adhesion matrix molecule. The aim of this study was to define the role of the uPA system in myogenic cell migration that is necessary for fusion. Using a two-dimensional motility assay and microcinematography, we showed that any interference with the [uPAR:uPA:PAI-1] complex formation, and interference with LRP binding to this complex, markedly decreased myogenic cell motility. This phenomenon was reversible and independent of plasmin activity. Inhibition of cell motility was associated with suppression of both filopodia and membrane ruffling activity. [uPAR:uPA:PAI-1:LRP] complex formation involves high-affinity molecular interactions and results in quick internalization of the complex. It is likely that this complex supports the membrane ruffling activity involved in the guidance of the migrating cell toward appropriate sites for attachment.  相似文献   

3.
We have synthesized dextran derivatives called RGTAs (for regenerating agents) that were designed to mimic some of the properties of heparin or heparan sulfate to interact with and protect heparin binding growth factors. Some of these growth factors have been described to be involved in myogenesis control. In previous studies, we have shown that muscle regeneration in adults could be greatly enhanced in vivo by treatment with RGTA. Since muscle regeneration occurs through the activation of satellite cells, in the present study we have used primary cultures of rat satellite cells and treated them with the heparan sulfate analogue RGTA or heparin in order to stimulate their growth and differentiation. We also studied the effect of these substances on calpain (calcium-activated neutral proteases) expression in these cultures. Indeed, several reports, principally based on fetal myoblast cultures or myogenic cell lines, have suggested that calpains might be involved in myoblast fusion during myogenic differentiation. We therefore studied the expression of microcalpain (mu-calpain), millicalpain (m-calpain), and calpain 3 in the course of differentiation of these satellite cell cultures in the absence or in the presence of heparin or of a mimic compound (the RGTA RG1282). RGTA and heparin were shown to have a dual effect on satellite cell proliferation and differentiation: RGTA stimulated proliferation with a maximum dose effect at 1 microgam/ml. Heparin used at concentrations similar to those of RGTA was less efficient at stimulating proliferation. Both substances were shown, however, to induce precocious and enhanced differentiation of satellite cells. We showed by quantitative RT-PCR analysis that mu-calpain, m-calpain, and calpain 3 mRNAs were expressed in satellite cell cultures in proliferating myoblasts (day 3) and differentiating cultures (days 7 and 12). The level of mu-calpain mRNA was increased by a factor of 3 during differentiation of satellite cells, whereas the level of m-calpain mRNAs was slightly increased at day 12 only, and calpain 3 mRNA was slightly reduced in these differentiating cultures. Interestingly enough, RGTA and heparin, which both strongly increased differentiation, reduced the expression of the mu- and m-calpains and slightly increased that of calpain 3 in differentiating cultures. These results showed that there was no correlation between the extent of myoblast differentiation and the level of calpain expression in satellite cells grown in primary cultures and underscored the differences between these adult cells and fetal myoblasts.  相似文献   

4.
5.
Tumor necrosis factor-alpha (TNFalpha) critically regulates several cellular functions during monocyte/macrophage differentiation. We therefore investigated during the phorbol ester (phorbol 12-myristate 13-acetate (PMA))-induced monocyte/macrophage differentiation of the human HL-60 leukemia cells, if TNFalpha contributed to plasminogen activator inhibitor type-1 (PAI-1) synthesis that is initiated by a protein kinase Cbeta-extracellular signal-regulated kinase 2-dependent pathway (Lopez, S., Peiretti, F., Morange, P., Laouar, A., Fossat, C., Bonardo, B., Huberman, E., Juhan-Vague, I., and Nalbone, G. (1999) Thromb. Haemostasis 81, 415-422). Following PMA treatment, the level of TNFalpha mRNA strongly increased and appeared earlier than PAI-1 mRNA. An anti-TNFalpha antibody significantly inhibited the PMA-induced PAI-1 mRNA and protein levels. The recombinant human TNFalpha, which is inactive on native HL-60 cells in terms of PAI-1 synthesis, optimally potentiates it once HL-60 cells are committed into the differentiation process. The use of 1) the HL-525 cell line, a clone issued from HL-60 cells rendered resistant to PMA-induced differentiation, and 2) the transforming growth factorbeta-1/vitamin D3 differentiative mixture confirmed the relationships between the induction of differentiation and the potency of TNFalpha to up-regulate PAI-1 synthesis. In conclusion, we showed that during the induction of monocyte/macrophage differentiation, TNFalpha and PAI-1 gene expressions are activated and that synthesized TNFalpha up-regulates and prolongs, in an autocrine manner, the synthesis of PAI-1.  相似文献   

6.
Cultured keratinocytes resemble migrating keratinocytes under conditions of reepithelialization during wound healing. Such keratinocytes express urokinase-type plasminogen activator (uPA) and its specific receptor (uPA receptor). Receptor-bound uPA activates plasminogen, thus providing plasmin for pericellular proteolysis. uPA is regulated by the plasminogen activator inhibitors PAI-1 and PAI-2. As indicated by immunohistology, neither uPA nor uPA receptor is expressed in normal epidermis. Thus, the down-regulation of uPA and uPA-receptor expression in keratinocytes appears to be an important event in epidermal healing and restoration of a normal epidermal tissue architecture. We have addressed this matter by using a culture and differentiation system for keratinocytes in vitro. Keratinocytes were grown in organotypic cocultures for 4, 7, and 14 days. Frozen sections were analyzed with indirect immunofluorescence staining and overlay zymography, the latter detecting activity of plasminogen activators. While tPA and PAI-I stainings were consistently negative over the entire observation period, uPA and uPA receptor were expressed by basal keratinocytes at Days 4 and 7, but not at Day 14. Accordingly, overlay zymography revealed uPA activity at Days 4 and 7. PAI-2 was found throughout the entire observation period, but with varying distribution: at Days 4 and 7 all suprabasal keratinocytes stained positive for PAI-2. At Day 14, PAI-2-specific stainings were confined to the uppermost cells of the stratum spinosum. Our data demonstrate that uPA and uPA receptor, which are up-regulated in cultured keratinocytes, are down-regulated upon restoration of an epidermis-like structure. The distribution of PAI-2 varied over the observation period and at Day 14 resembled the distribution of PAI-2 in normal epidermis. Taken together, keratinocytes in organotypic coculture behave like keratinocytes in healing wounds in vivo with respect to the expression of the plasminogen activator system.  相似文献   

7.
The human chronic myeloid leukemia cell line K562 acquires several megakaryoblastoid features when cultured in the presence of the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We observed strongly increased secretion of several proteins into the culture media of K562 cells within a few hours of TPA treatment. Two of the major secreted polypeptides were identified by immunoprecipitation from media of metabolically labeled cultures as the tissue inhibitor of metalloproteinases (TIMP) and the type 1 plasminogen activator inhibitor (PAI-1). Maximal amounts of PAI-1 mRNA and secretion of PAI-1 polypeptides were observed after 24 hr of TPA treatment and PAI-1 persisted at elevated levels for several days. The induction of PAI-1 mRNA was dependent on de novo protein synthesis. Uninduced and induced cells secreted urokinase plasminogen activator in its single-chain proenzyme form (pro-u-PA), which was cleaved extracellularly to the active two-chain form as shown by pulse-chase labeling experiments. Upon TPA induction, the secretion of u-PA polypeptides increased severalfold, and there was a transient accumulation of pro-u-PA in the culture medium. However, this did not lead to increased u-PA activity in the cultures, since active u-PA was removed by complex formation with the large excess of coinduced PAI-1. Induction of u-PA mRNA was biphasic: The first peak of about tenfold increase in steady-state u-PA mRNA at 3 hr was followed by a steep decline to the baseline level at 12 hr, and a second, slower accumulation of u-PA mRNA occurred over the next few days. The biphasic accumulation of u-PA mRNA was also reflected in u-PA protein synthesis. We conclude that concerted changes in favor of a nonproteolytic extracellular environment occur in TPA-induced K562 cultures undergoing megakaryoblastoid differentiation. These changes include excessive secretion of TIMP and inhibition of the induced u-PA by the simultaneous accumulation of PAI-1.  相似文献   

8.
Satellite cells represent a cellular source of regeneration in adult skeletal muscle. It remains unclear why a large pool of stem myoblasts in denervated muscle does not compensate for the loss of muscle mass during post-denervation atrophy. In this study, we present evidence that satellite cells in long-term denervated rat muscle are able to activate synthesis of contractile proteins after single fusions in situ. This process of early differentiation leads to formation of abnormally diminutive myotubes. The localization of such dwarf myotubes beneath the intact basal lamina on the surface of differentiated muscle fibers shows that they form by fusion of neighboring satellites or by the progeny of a single satellite cell following one or two mitotic divisions. We demonstrated single fusions of myoblasts using electron microscopy, immunocytochemical labeling and high resolution confocal digital imaging. Sequestration of nascent myotubes by the rapidly forming basal laminae creates a barrier that limits further fusions. The recruitment of satellite cells in the formation of new muscle fibers results in a progressive decrease in their local densities, spatial separation and ultimate exhaustion of the myogenic cell pool. To determine whether the accumulation of aberrant dwarf myotubes is explained by the intrinsic decline of myogenic properties of satellite cells, or depends on their spatial separation and the environment in the tissue, we studied the fusion of myoblasts isolated from normal and denervated muscle in cell culture. The experiments with a culture system demonstrated that the capacity of myoblasts to synthesize contractile proteins without serial fusions depended on cell density and the availability of partners for fusion. Satellite cells isolated from denervated muscle and plated at fusion-permissive densities progressed through the myogenic program and actively formed myotubes, which shows that their myogenic potential is not considerably impaired. The results of this study suggest that under conditions of denervation, progressive spatial separation and confinement of many satellite cells within the endomysial tubes of atrophic muscle fibers and progressive interstitial fibrosis are the important factors that prevent their normal differentiation. Our findings also provide an explanation of why denervated muscle partially and temporarily is able to restore its functional capacity following injury and regeneration: the release of satellite cells from their sublaminal location provides the necessary space for a more active regenerative process.  相似文献   

9.
Human omental microvascular endothelial (HOME) cells seeded on Matrigel begin to migrate within 1 h, forming honeycomb-like structures and capillary-like networks within 18 h. Cross-sections of the capillary networks show them to be tube-like structures. Northern blot analysis showed that tissue-type plasminogen activator (t-PA) mRNA synthesis increased from the initial state at 0 h after seeding on Matrigel, reaching a steady state after 4 h. This elevated cellular t-PA mRNA level decreased markedly at 24 h. In contrast, the cellular plasminogen activator inhibitor-1 (PAI-1) mRNA level demonstrated biphasic curves during the 24 h after seeding on Matrigel: the PAI-1 mRNA level was increased eightfold initially at 4 h over that at O h, then declined, and again secondarily increased to greater than tenfold at 18 h. Cellular levels of both 72 kD type IV collagenase and tissue inhibitor of metalloproteinase (TIMP-2) mRNA were increased only a slightly within 2–4 h. These elevated mRNA levels were maintained for 18 h, while the TIMP-1 mRNA level increased up to 18 h, reaching around three times the level at O h. However, on collagen-coated dishes, cellular levels of t-PA, PAI-1, 72 kD type IV collagenase, TIMP-1, and TIMP-2 mRNA were not greatly changed during incubation for 24 h. On Matrigel, the cellular t-PA mRNA level at 18 h after seeding was greatly increased when treated with specific anti-transforming growth factor-β (TGF-β) antibody. In contrast, both PAI-1 and TIMP-1 mRNA levels at 18 h were reduced in the presence of anti-TGF-β antibody. Development of the capillary network on Matrigel was inhibited in the presence of anti-t-PA antibody. Epidermal growth factor (EGF) enhanced t-PA gene expression and TGF-β inhibited its expression in HOME cells cultured on collagen-coated dishes. On the other hand, TGF-β enhanced cellular expression of the PAI-1 gene. The formation of a capillary network by HOME cells on Matrigel appears to be balanced by angiogenic EGF and anti-angiogenic TGF-β through modulation of PA activity. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Myogenesis, the process of skeletal muscle formation, is a highly coordinated multistep biological process. Accumulating evidence suggests that long non-coding RNAs (lncRNAs) are emerging as a gatekeeper in myogenesis. Up to now, most studies on muscle development-related lncRNAs are mainly focussed on humans and mice. In this study, a novel muscle highly expressed lncRNA, named lnc23, localized in nucleus, was found differentially expressed in different stages of embryonic development and myogenic differentiation. The knockdown and over-expression experiments showed that lnc23 positively regulated the myogenic differentiation of bovine skeletal muscle satellite cells. Then, TMT 10-plex labelling quantitative proteomics was performed to screen the potentially regulatory proteins of lnc23. Results indicated that lnc23 was involved in the key processes of myogenic differentiation such as cell fusion, further demonstrated that down-regulation of lnc23 may inhibit myogenic differentiation by reducing signal transduction and cell fusion among cells. Furthermore, RNA pulldown/LC-MS and RIP experiment illustrated that PFN1 was a binding protein of lnc23. Further, we also found that lnc23 positively regulated the protein expression of RhoA and Rac1, and PFN1 may negatively regulate myogenic differentiation and the expression of its interacting proteins RhoA and Rac1. Hence, we support that lnc23 may reduce the inhibiting effect of PFN1 on RhoA and Rac1 by binding to PFN1, thereby promoting myogenic differentiation. In short, the novel identified lnc23 promotes myogenesis of bovine skeletal muscle satellite cells via PFN1-RhoA/Rac1.  相似文献   

11.
Cadherins belong to a large family of membrane glycoprotein adhesion receptors that mediate homophilic, calcium-dependent cell adhesion. During myogenesis, cadherins are involved in initial cell-to-cell recognition; and it has also been suggested that they play a role in the initiation of myoblast fusion into multinuclear myotubes. One of the members of the cadherin family, M-cadherin, has been detected during embryogenesis in myogenic cells of somitic origin and in adult muscles. We investigated the distribution and function of M-cadherin and beta-catenin during differentiation of myoblasts in primary cultures of rat satellite cells. We found that M-cadherin was accumulated at the areas of contact between fusing myoblasts and that it colocalized with beta-catenin. Moreover, beta-catenin colocalized with actin in pre-fusing myoblasts. We show that myoblast differentiation is accompanied by an increase in the amounts of M-cadherin and beta-catenin both at the mRNA and the protein level. Flow cytometry analysis showed that M-cadherin expression was highest in fusing myoblasts. In addition, an antibody specific for the extracellular domain of M-cadherin inhibited the fusion of cultured myoblasts. These data suggest that regulation of the M-cadherin level plays an important role in the differentiation of satellite cells and in myoblast fusion in primary cultures.  相似文献   

12.
13.
The process of muscle regeneration in normal and dystrophic muscle depends on locally produced cytokines and growth factors and requires the activity of the urokinase plasminogen activator/urokinase plasminogen activator receptor/plasminogen activator inhibitor-1 system. In this study we tested the effect of basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) and transforming growth factor-beta (TGFbeta) on the fibrinolytic pattern of normal and dystrophic satellite cells, their mitogenic and motogenic activities and the dependence of such activities on the cell-associated fibrinolytic system. We have observed that the urokinase plasminogen activator (u-PA) receptor is weakly upregulated by bFGF in normal satellite cells, while it is strongly up-regulated by TGFbeta, mainly in dystrophic myoblasts. bFGF up-regulated u-PA in both normal and dystrophic myoblasts grown in primary culture, while a striking down-regulation was observed with TGFbeta. TGFbeta was the only growth factor able to exceptionally up-regulate plasminogen activator inhibitor-1 (PAI-1), mainly in dystrophic satellite cells. HGF did not show any activity on the fibrinolytic system. Proliferation and invasion into Matrigel matrices of normal and dystrophic cells occurred regardless of the growth factor-dependent regulation of the fibrinolytic system. Nevertheless, each growth factor required the efficiency of the constitutive cell-associated fibrinolytic system to operate, as shown by impairment of growth factor activity with antagonists of u-PA and of its receptor. Noteworthy, TGFbeta induced a dose-dependent increase of Matrigel invasion only in dystrophic myoblasts. Since TGFbeta-challenged dystrophic myoblasts undergo an exceptional up-regulation of the receptor and of PAI-1, we propose the possibility that the TGFbeta-induced fibrinolytic pattern (low urokinase plasminogen activator, high receptor and high PAI-1) may be exploited to promote survival and spreading of transplanted engineered myoblasts in Duchenne muscular dystrophy.  相似文献   

14.
Satellite cells are the major pool of muscle stem cells after birth; they represent an important component required to maintain muscle mass and functionality during life. The molecular mechanisms involved in myogenic differentiation are relatively well-known. However, the role of extracellular stimulus in the control of differentiation remains largely unresolved. Notably little is known about the impact of nutrients on this process. Here we have studied the role of leucine, an essential amino acid, in the control of myogenic differentiation. Leucine is a well-known regulator of muscle protein synthesis. It acts not only as a substrate for translation but also as a regulator of gene expression and signaling pathways such as those involving mTOR and GCN2. In this study we demonstrated that the lack of leucine abolishes the differentiation of both C2C12 myoblasts and primary satellite cells. This effect is associated with a modification of the pattern of expression of the myogenic regulatory factors (MRF) myf5 and myoD. We report an up-regulation of myf5 mRNA and a decrease of myoD protein level during leucine starvation. This study demonstrates the importance of a nutrient, leucine, in the control of the myogenic differentiation program.  相似文献   

15.
Expression of Wnt proteins is known to be important for developmental processes such as embryonic pattern formation and determination of cell fate. Previous studies have shown that Wn4 was involved in the myogenic fate of somites, in the myogenic proliferation, and differentiation of skeletal muscle. However, the function of this factor in adult muscle homeostasis remains not well understood. Here, we focus on the roles of Wnt4 during C2C12 myoblasts and satellite cells differentiation. We analyzed its myogenic activity, its mechanism of action, and its interaction with the anti-myogenic factor myostatin during differentiation. Established expression profiles indicate clearly that both types of cells express a few Wnts, and among these, only Wnt4 was not or barely detected during proliferation and was strongly induced during differentiation. As attested by myogenic factors expression pattern analysis and fusion index determination, overexpression of Wnt4 protein caused a strong increase in satellite cells and C2C12 myoblast differentiation leading to hypertrophic myotubes. By contrast, exposure of satellite and C2C12 cells to small interfering RNA against Wnt4 strongly diminished this process, confirming the myogenic activity of Wnt4. Moreover, we reported that Wnt4, which is usually described as a noncanonical Wnt, activates the canonical β-catenin pathway during myogenic differentiation in both cell types and that this factor regulates negatively the expression of myostatin and the regulating pathways associated with myostatin. Interestingly, we found that recombinant myostatin was sufficient to antagonize the differentiation-promoting activities of Wnt4. Reciprocally, we also found that the genetic deletion of myostatin renders the satellite cells refractory to the hypertrophic effect of Wnt4. These results suggest that the Wnt4-induced decrease of myostatin plays a functional role during hypertrophy. We propose that Wnt4 protein may be a key factor that regulates the extent of differentiation in satellite and C2C12 cells.  相似文献   

16.
The tissue-specific distribution of tissue-type and urokinase-type plasminogen activator (t-PA and u-PA) and their inhibitor type 1 (PAI-1) was analyzed at mRNA level in five major rat organ tissues. t-PA mRNA was detected in lung, kidney, heart, and liver. u-PA mRNA was detected in kidney and lung. Presence of PA mRNA correlated with the detection of PA activity in extracts of these tissues. PAI-1 mRNA was detected predominantly in heart and lung. Although PAI activity could not be measured directly in tissue extracts, the presence of PAI-1 mRNA correlated with the occurrence of PA.PAI complex in fibrin autography of tissue extracts. Endotoxin injection caused a very large increase in plasma PAI activity. This increase correlated with a marked increase in PAI-1 mRNA in nearly all tissues studied. The increase in PAI-1 mRNA is most pronounced in lung and liver. Endotoxin injection also caused an increased level of t-PA mRNA in heart and kidney, and an increased u-PA mRNA level in kidney. mRNA analysis of freshly isolated and separated subfractionated liver cells showed that the marked increase in PAI-1 mRNA in the liver after endotoxin injection may be due mainly to a strong increase of PAI-1 mRNA in the liver endothelial cells.  相似文献   

17.
People with diabetes experience morbidity and mortality from unregulated microvascular remodeling, which may be linked to hyperglycemia. Elevated glucose leads to extracellular matrix collagen glycation, which delays endothelial capillary-like tube formation in vitro. Glucose also increases endothelial cell fibroblast growth factor-2 (FGF-2) release and extracellular matrix storage, which should increase tube formation. In this study, we determined if FGF-2 could restore plasminogen system activity and angiogenic function in endothelial cells on glycated collagen. Human umbilical vein endothelial cells cultured on native or glycated collagen substrates were stimulated with FGF-2. Plasminogen system activity, cell migration, and capillary-like tube formation were measured, along with plasminogen system protein and mRNA levels. Glycated collagen decreased endothelial cell plasminogen system activity, cell migration, and tube length. FGF-2 did not restore plasminogen system activity or tube formation in cells on glycated collagen, despite decreasing plasminogen activator inhibitor-1 (PAI-1) protein level. We now show that PAI-1 binds to glycated collagen, which may localize PAI-1 to the extracellular matrix. These data suggest that FGF-2 may not restore angiogenic functions in endothelial cells on glycated collagen due to PAI-1 bound to glycated collagen.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号