首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Directional mesoderm cell migration in the Xenopus gastrula.   总被引:2,自引:0,他引:2  
The movement of the dorsal mesoderm across the blastocoel roof of the Xenopus gastrula is examined. We show that different parts of the mesoderm which can be distinguished by their morphogenetic behavior in the embryo are all able to migrate independently on the inner surface of the blastocoel roof. The direction of mesoderm cell migration is determined by guidance cues in the extracellular matrix of the blastocoel roof and by an intrinsic tissue polarity of the mesoderm. The mesodermal polarity shows the same orientation as the external guidance cues and is strongly expressed in the more posterior mesoderm. The guidance cues of the extracellular matrix are recognized by all parts of the dorsal mesoderm and even by nonmesodermal cells from other regions of the embryo. The extracellular matrix consists of a network of fibronectin-containing fibrils. The adhesiveness of this matrix does not vary along the axis of mesoderm movement, excluding haptotaxis as a guidance mechanism in this system. However, an intact fibronectin fibril structure is necessary for directional mesoderm cell migration. When the assembly of fibronectin into fibrils is inhibited, mesoderm explants still migrate on the amorphous extracellular matrix, but no longer directionally. It is proposed that polarized extracellular matrix fibrils may normally guide the migrating mesoderm to its target region.  相似文献   

3.
4.
During Xenopus gastrulation, the mesoderm migrates across a fibronectin (FN)-containing substrate, the inner surface of the blastocoel roof (BCR). A possible role for FN is to promote the extension of cytoplasmic processes which serve as locomotory organelles for mesoderm cells. To test this idea, the interaction of prospective head mesoderm (HM) cells with FN was examined in vitro. Nonattached HM cells extend filiform processes from an active region of the cell surface. This spontaneous activity is modulated by cell attachment to FN. Additional active regions appear, and cytoplasmic lamellae extend from these sites, leading to cell spreading and translocation. Thus, although FN seems not to induce processes de novo, it modulates a spontaneous protrusive activity to yield the extension of lamellae along the substrate surface. As putative locomotory organelles, HM cell protrusions were characterized functionally. They adhere rapidly and selectively to in situ substrates, preferentially to FN, and retract upon attachment. During translocation, the passive cell body is moved by the activity of the protrusions. Lamellae continuously extend, retract, or split into parts. This leads to an intermittent, nonpersistent mode of translocation. The polarity of HM cells, as expressed in the arrangement of protrusions, bears no constant relationship to the orientation of the cell body, and a cell can change its direction of movement without a corresponding rotation of the cell body. This may be relevant with respect to the mechanism by which mesoderm cells translate guidance cues of the BCR into a polarized, oriented cell structure during directional migration in situ.  相似文献   

5.
During amphibian gastrulation, the embryo is transformed by the combined actions of several different tissues. Paradoxically, many of these morphogenetic processes can occur autonomously in tissue explants, yet the tissues in intact embryos must interact and be coordinated with one another in order to accomplish the major goals of gastrulation: closure of the blastopore to bring the endoderm and mesoderm fully inside the ectoderm, and generation of the archenteron. Here, we present high-resolution 3D digital datasets of frog gastrulae, and morphometrics that allow simultaneous assessment of the progress of convergent extension, blastopore closure and archenteron formation in a single embryo. To examine how the diverse morphogenetic engines work together to accomplish gastrulation, we combined these tools with time-lapse analysis of gastrulation, and examined both wild-type embryos and embryos in which gastrulation was disrupted by the manipulation of Dishevelled (Xdsh) signaling. Remarkably, although inhibition of Xdsh signaling disrupted both convergent extension and blastopore closure, mesendoderm internalization proceeded very effectively in these embryos. In addition, much of archenteron elongation was found to be independent of Xdsh signaling, especially during the second half of gastrulation. Finally, even in normal embryos, we found a surprising degree of dissociability between the various morphogenetic processes that occur during gastrulation. Together, these data highlight the central role of PCP signaling in governing distinct events of Xenopus gastrulation, and suggest that the loose relationship between morphogenetic processes may have facilitated the evolution of the wide variety of gastrulation mechanisms seen in different amphibian species.  相似文献   

6.
When groups of cells from the inner marginal zone (mesendoderm) of the early Xenopus gastrula are placed on a fibronectin-coated substratum, the explants of the dorsal region spread into monolayers whereas those from the ventral region, though they adhere to the substratum, do not show this spreading reaction. This different behaviour is not reflected in the in vitro behaviour of the respective cells kept in isolation. No difference between dorsal and ventral cells was observed, when they were tested for lamellipodia-driven spreading, movement over the substratum or properties of integrin- and cadherin-mediated adhesion. However, cell contacts between individual dorsal cells are significantly less stable than those between ventral cells. The higher flexibility of the cell-cell contacts seems to determine the spreading behaviour of the dorsal explants, which includes lamellipodia-driven outward movement of the peripheral cells, rearrangements of the cells, building up a horizontal tension within the aggregate and intercalation of cells from above into the bottom layer. Ventral explants lack these properties. Staining for F-actin revealed a decisive difference of the supracellular organisation of the cytoskeleton that underlies the morphology of the different types of explants. Evidence for a higher flexibility of cell-cell contacts in the dorsal mesendoderm was also obtained in SEM studies on gastrulating embryos. Dorsal mesendodermal cells show stronger protrusive activity as compared to ventral mesendodermal cells. The meaning of these observations for the mechanisms of morphogenetic movements during gastrulation is central to the discussion.  相似文献   

7.
8.
The organizer has traditionally been considered the major source of somite-inducing signals. We show here that signaling from the neural plate specifies somite tissue and regulates somite size in the Xenopus gastrula. Ectopic undifferentiated neural tissue induces massive somite expansion at the expense of intermediate and lateral plate mesoderm. Although the early expanded somite expresses muscle-specific markers, only a portion terminally differentiates, suggesting that myotome development requires additional signals. Explant assays demonstrate that neural tissue induces somite-specific marker expression even in the absence of the organizer. Finally, we demonstrate that neural tissue is required for proper somite development because elimination of neural precursors results in pronounced somite reduction. Thus, an important reciprocal interaction exists between somite and neural tissue that is mutually reinforcing and critical for normal embryonic patterning.  相似文献   

9.
Fully grown Xenopus oocytes can remain in their immature state essentially indefinitely, or, in response to the steroid hormone progesterone, can be induced to develop into fertilizable eggs. This process is termed oocyte maturation. Oocyte maturation is initiated by a novel plasma membrane steroid hormone receptor. Progesterone brings about inhibition of adenylate cyclase and activation of the Mos/MEK1/p42 MAP kinase cascade, which ultimately brings about the activation of the universal M phase trigger Cdc2/cyclin B. Oocyte maturation provides an interesting example of how signaling cascades entrain the cell cycle clock to environmental changes.  相似文献   

10.
Colorectal cancer still represents one of the most common causes of morbidity and mortality among Western populations. The adenomatous polyposis coli (APC) gene, originally identified as the gene responsible for familial adenomatous polyposis (FAP), an inherited predisposition to multiple colorectal tumors, is now considered as the true "gatekeeper" of colonic epithelial proliferation. It is mutated in the vast majority of sporadic colorectal tumors, and inactivation of both APC alleles occurs at early stages of tumor development in man and mouse. The study of FAP has also led to one of the most consistent genotype-phenotype correlations in hereditary cancer. However, great phenotypic variability is still observed not only among carriers of the identical APC mutation from unrelated families but also from within the same kindred. The generation of several mouse models carrying specific Apc mutations on the same inbred genetic background has confirmed the genotype-phenotype correlations initially established among FAP patients, as well as provided important insights into the mechanisms of colorectal tumor formation. Here we review the major features of the available animal models for FAP and attempt the formulation of a hypothetical model for APC-driven tumorigenesis based on the observed genetic and phenotypic variability in mouse and man.  相似文献   

11.
Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural crest lineages affect only nearby ectoderm cells.  相似文献   

12.
In vertebrates, PDGFA and its receptor, PDGFRalpha, are expressed in the early embryo. Impairing their function causes an array of developmental defects, but the underlying target processes that are directly controlled by these factors are not well known. We show that in the Xenopus gastrula, PDGFA/PDGFRalpha signaling is required for the directional migration of mesodermal cells on the extracellular matrix of the blastocoel roof. Blocking PDGFRalpha function in the mesoderm does not inhibit migration per se, but results in movement that is randomized and no longer directed towards the animal pole. Likewise, compromising PDGFA function in the blastocoel roof substratum abolishes directionality of movement. Overexpression of wild-type PDGFA, or inhibition of PDGFA both lead to randomized migration, disorientation of polarized mesodermal cells, decreased movement towards the animal pole, and reduced head formation and axis elongation. This is consistent with an instructive role for PDGFA in the guidance of mesoderm migration.  相似文献   

13.
Molecular markers for specific cell lineages would be useful in studies of cellular differentiation. To isolate such markers monoclonal antibodies (MoABs) were raised against plasma membranes isolated from gastrulating Xenopus embryos. Those antibodies that recognized subsets of cells within the embryo were selected by indirect immunofluorescence. The analysis of eight such MoAbs is presented. Western blot analysis showed that all but one MoAb recognized a complex pattern of glycoconjugates associated with glycoproteins. All the antigens recognized by the MoAbs were maternal in origin and displayed similar spatial patterns of pregastrular expression. This pattern of immunoreactivity at the apical surface was inherited passively during cleavage by the resulting superficial blastomeres suggesting that ectodermal specific markers of maternal origin are pre-localized to the cortical ooplasm in mature oocytes. We suggest that these maternal components may be specific glycosyl transferases. Three different patterns of expression were observed during gastrulation as exemplified by MoAbs 1F10C1, 3A4D1, and 6F10B6. MoAb 6F10B6 was specific for both neural and non-neural epithelium. MoAb 3A4D1 was specific for non-neural epidermis. MoAb 1F10C1 appeared to recognize a protein epitope on an extracellular component expressed by the superficial and involuting epithelial cells. The pattern of expression for the 1F10C1 antigen suggests that it may play a role in facilitating the movement of the involuting cells during gastrulation.  相似文献   

14.
The mechanisms orchestrating spatial cell division control remain poorly understood. In animal cells, the position of the mitotic spindle dictates cleavage furrow placement, and thus plays a key role in governing spatial relationships between resulting daughter cells. The one-cell stage Caenorhabditis elegans embryo is an attractive model system to investigate the mechanisms underlying spindle positioning in metazoans. In this review, the experimental advantages of this model system for an in vivo dissection of cell division processes are first discussed. Next, three lines of experiments that were conducted to dissect the mechanisms governing spindle positioning in one-cell stage C. elegans embryos are summarized. First, localized laser micro-irradiations were utilized to identify the forces acting on spindle poles during anaphase. This work revealed that there is a precise imbalance of pulling forces acting on the two spindle poles, with the forces acting on the posterior spindle pole being in slight excess, thus explaining the asymmetric spindle position achieved by the end of anaphase. Second, an RNAi-based functional genomic screen was carried out to identify novel components required for generating these pulling forces. This uncovered that gpr-1/gpr-2, which encode GoLoco-containing proteins, as well as the previously identified Ga subunits goa-1/gpa-16, are required for generation of pulling forces on the spindle poles. Third, the zyg-8 locus was identified by mutational analysis to play a distinct role during anaphase spindle positioning. zyg-8 was found to encode a protein related to human Doublecortin, which is affected in patients with neuronal migration disorders. Moreover, ZYG-8 is a microtubule-associated protein that stabilizes microtubules against depolymerization. Together, these experimental approaches contribute to a better understanding of the mechanisms orchestrating spatial cell division control in metazoan organisms.  相似文献   

15.
Ventral ectodermal explants taken from early gastrula embryos of Xenopus laevis were artificially stretched either by two opposite concentrated forces or by a distributed force applied to the internal explant’s layer. These modes of stretching reflect different mechanical situations taking place in the normal development. Two main types of kinematic response to the applied tensions were detected. First, by 15 min after the onset of concentrated stretching a substantial proportion of the explant’s cells exhibited a concerted movement towards the closest point of the applied stretching force. We define this movement as tensotaxis. Later, under both concentrated and distributed stretching, most of the cell’s trajectories became reoriented perpendicular to the stretching force, and the cells started to intercalate between each other, both horizontally and vertically. This was accompanied by extensive elongation of the outer ectodermal cells and reconstruction of cell-cell contacts. The intercalation movements led first to a considerable reduction in the stretch-induced tensions and then to the formation of peculiar bipolar ”embryoid” shapes. The type and intensity of the morphomechanical responses did not depend upon the orientation of a stretching force in relation to the embryonic axes. We discuss the interactions of the passive and active components in tension-dependent cell movements and their relations to normal morphogenetic events. Received: 26 April 1999 / Accepted: 30 August 1999  相似文献   

16.
17.
18.
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.  相似文献   

19.
After in vitro incubation of Xenopus oocytes with vitellogenin (VTG)-gold conjugate, the gold particles are distributed on the whole plasma membrane. Their concentration in coated pits still occurs at 0 degrees C. At +20 degrees C the label quickly (30 sec) appears in multi-vesicular endosomes (MVE) which segregate together with primary endocytic vesicles into distinct clusters below the plasma membrane. From this step up to crystallization of the yolk platelets, the gold particles stay in the same compartment. During 5.5 h the label progressively increases along the MVE membrane, first (1.5 h) by fusion of primary endocytic vesicles with consecutively enlarging endosomes, then (4 h) by decreasing of the MVE membrane. As concerns the yolk platelet formation, concentration of primordial yolk platelets (PYP) occurs at 5.5 h from the incubation onset, the labeling of preexisting yolk platelets starts at 7 h, while crystallization of PYP begins only after 12-13 h. Our results indicate that VTG receptors are not preclustered in coated pits and their lateral translation is not inhibited at 0 degrees C. The yolk protein processing takes place within one compartment only. The VTG condensation begins with a long concentration phase of receptor-VTG complexes still integrated in the endosome membrane. It occurs in MVE by: i) a repeated fusion of primary endocytic vesicles; ii) removing part of the endosome membrane by internal vesiculation. Fusion between endosomes occurs only after VTG has dissociated from its receptors and VTG dissociates only when when the density of the VTG-receptor complexes in the endosome membrane is sufficient. Crystallization begins after a 7-8 h delay. The endosome migration into the oocyte is also controlled by the binding of VTG to its receptors. Our results also demonstrate that binding of VTG colloidal gold modifies neither the vitellogenic pathway nor the duration of the vitellogenin internalization. However when vitellogenin is bound to colloidal gold, dissociation of ligand-receptor complexes is delayed because the amount of ligand in the incubation medium is necessarily low.  相似文献   

20.
Metamorphosis in frogs is a critical developmental process through which a tadpole changes into an adult froglet. Metamorphic changes include external morphological transformations as well as important changes in the wiring of sensory organs and central nervous system. This review aims to provide an overview on the events that occur in the visual system of metamorphosing amphibians and to discuss recent studies that provide new insight into the molecular mechanisms that control changes in the retinal growth pattern as well as the formation of new axonal pathways in the central nervous system. BioEssays 23:319-326, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号