首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While propolis is known to have abundant bioactive constituents and a variety of biological activities, it is not clear whether propolis has beneficial effects on high glucose-mediated vascular endothelial impairment. The aim of the present study was to investigate the potential protective effect of propolis extract against the acute vascular endothelial dysfunction resulting from exposure to high glucose load and to elucidate its underlying mechanism. Rat aortic rings were incubated with normal glucose (11 mM), high glucose (44 mM), or mannitol (44 mM) for 3 h with or without propolis extract (400 μg/ml). Contraction to phenylephrine (Phe, 10?9–10?5 M) and relaxation to acetylcholine (ACh, 10?9–10?5 M) and sodium nitroprusside (SNP, 10?9–10?5 M) were measured before and after incubation. Changes in malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were also measured. Phe-induced contraction was impaired by high glucose as the E max decreased from 138.87?±?11.43 to 103.65?±?11.5 %. In addition, ACh-induced relaxation was impaired as the E max decreased from 99.80?±?7.25 to 39.20?±?6.5 %. SNP-induced relaxation was not affected. Furthermore, high glucose decreased the levels of both SOD (by 6 U/ml) and GSH (by 68 %) and increased levels of MDA (by 85 %). Propolis extract prevented high glucose-induced impairment of Phe and ACh responses and increased both SOD and GSH, leading to decreased MDA levels. In conclusion, propolis can protect against high glucose-induced vascular dysfunction by reducing oxidative stress.  相似文献   

2.
Cardiovascular tissue injury in ischemia/reperfusion has been shown to be prevented by angiotensin-converting enzyme (ACE) inhibitors. However, the mechanism on endothelial cells has not been assessed in detail. Cultured human aortic endothelial cells (HAEC) were exposed to hypoxia with or without reoxygenation. Hypoxia enhanced apoptosis along with the activation of caspase-3. Reoxygenation increased lactate dehydrogenase release time-dependently, along with an increase of intracellular oxygen radicals. ACE inhibitor quinaprilat and bradykinin significantly lessened apoptosis and lactate dehydrogenase release with these effects being diminished by a kinin B2 receptor antagonist and a nitric oxide synthase inhibitor. In conclusion, hypoxia activated the suicide pathway leading to apoptosis of HAEC by enhancing caspase-3 activity, while subsequent reoxygenation induced necrosis by enhancing oxygen radical production. Quinaprilat could ameliorate both apoptosis and necrosis through the upregulation of constitutive endothelial nitric oxide synthase via an increase of bradykinin, with the resulting increase of nitric oxide.  相似文献   

3.
Superoxide (O2•−) is implicated in inflammatory states including arteriosclerosis and ischemia-reperfusion injury. Cobalamin (Cbl) supplementation is beneficial for treating many inflammatory diseases and also provides protection in oxidative-stress-associated pathologies. Reduced Cbl reacts with O2•− at rates approaching that of superoxide dismutase (SOD), suggesting a plausible mechanism for its anti-inflammatory properties. Elevated homocysteine (Hcy) is an independent risk factor for cardiovascular disease and endothelial dysfunction. Hcy increases O2•− levels in human aortic endothelial cells (HAEC). Here, we explore the protective effects of Cbl in HAEC exposed to various O2•− sources, including increased Hcy levels. Hcy increased O2•− levels (1.6-fold) in HAEC, concomitant with a 20% reduction in cell viability and a 1.5-fold increase in apoptotic death. Pretreatment of HAEC with physiologically relevant concentrations of cyanocobalamin (CNCbl) (10-50 nM) prevented Hcy-induced increases in O2•− and cell death. CNCbl inhibited both Hcy and rotenone-induced mitochondrial O2•− production. Similarly, HAEC challenged with paraquat showed a 1.5-fold increase in O2•− levels and a 30% decrease in cell viability, both of which were prevented with CNCbl pretreatment. CNCbl also attenuated elevated O2•− levels after exposure of cells to a Cu/Zn-SOD inhibitor. Our data suggest that Cbl acts as an efficient intracellular O2•− scavenger.  相似文献   

4.
This study explored whether zinc supplementation alleviates diabetic endothelial dysfunction and the possible mechanisms underlying. We found that high glucose exposure significantly increased reactive oxygen species (ROS) and decreased guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels in bovine aortic endothelial cells (BAECs) in a time-dependent manner. High glucose increased zinc release from GTPCH1 in a similar trend. Zinc supplementation restored GTPCH1 and BH4 levels and blocked ROS accumulation in both BACEs and wild type GTPCH1 transfected HEK293 cells, but not in the zinc-free C141R mutant of GTPCH1 transfected ones. In vivo experiments showed that exogenous supplementation of zinc to streptozotocin (STZ)-induced diabetic mice partially improved the impaired maximal endothelium-dependent vasorelaxation, reversed the aberrant reduction of GTPCH1 and BH4, and suppressed the elevation of ROS in the aortas. In conclusion, our study demonstrated a novel mechanism that via GTPCH1 restoration zinc supplementation exerts a protective benefit on diabetic endothelial dysfunction.  相似文献   

5.
To analyze the underlying cellular mechanisms of adaptation to ischemia-induced apoptosis through short acidic pretreatment, i.e. acidic preconditioning (APC), Wistar rat coronary endothelial cells (EC) were exposed for 40 min to acidosis (pH 6.4) followed by a 14 h recovery period (pH 7.4) and finally treated for 2 h with simulated in vitro ischemia (glucose-free anoxia at pH 6.4). APC led to a transient activation of p38 and Akt kinases, but not of JNK and ERK1/2 kinases, which was accompanied by significant reduction of the apoptotic cell number, caspase-12/-3 cleavage and Bcl-xL overexpression. These effects of APC were completely abolished by prevention of Akt- or p38-phosphorylation during APC. Furthermore, knock-down of Bcl-xL by siRNA-transfection also abolished the anti-apoptotic effect of APC. Therefore, APC leads to protection of EC against ischemic apoptosis by activation of Akt and p38 followed by overexpression of Bcl-xL, which is a key anti-apoptotic mechanism of APC.  相似文献   

6.
The aim of the study was to find out whether administration of selenium (Se) will protect the immature heart against ischemia/reperfusion. The control pregnant rats were fed laboratory diet (0.237 mg Se/kg diet); experimental rats received 2 ppm Na2SeO3 in the drinking water from the first day of pregnancy until day 10 post partum. The concentration of Se in the serum and heart tissue was determined by activation analysis, the serum concentration of NO by chemiluminescence, cardiac concentration of lipofuscin-like pigment by fluorescence analysis. The 10 day-old hearts were perfused (Langendorff); recovery of developed force (DF) was measured after 40 min of global ischemia. In acute experiments, 10 day-old hearts were perfused with selenium (75 nmol/l) before or after global ischemia. Sensitivity to isoproterenol (ISO, pD50) was assessed as a response of DF to increasing cumulative dose. Se supplementation elevated serum concentration of Se by 16%. Se increased ischemic tolerance (recovery of DF, 32.28 ± 2.37 vs. 41.82 ± 2.91%, P < 0.05). Similar results were obtained after acute administration of Se during post-ischemic reperfusion (32.28 ± 2.37 vs. 49.73 ± 4.40%, P < 0.01). The pre-ischemic treatment, however, attenuated the recovery (23.08 ± 3.04 vs. 32.28 ± 2.37%, P < 0.05). Moreover, Se supplementation increased the sensitivity to the inotropic effect of ISO, decreased cardiac concentration of lipofuscin-like pigment and serum concentration of NO. Our results suggest that Se protects the immature heart against ischemia/reperfusion injury. It seems therefore, that ROS may affect the function of the neonatal heart, similarly as in adults.  相似文献   

7.
The klotho gene, originally identified by insertional mutagenesis in mice, suppresses multiple aging phenotypes (e.g., arteriosclerosis, pulmonary emphysema, osteoporosis, infertility, and short life span). We have previously shown that mice heterozygous for a defect in the klotho gene upon parabiosis with wild-type mice show improved endothelial function, suggesting that the klotho gene product protects against endothelial dysfunction. In the present study, using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat which demonstrates multiple atherogenic risk factors (e.g., hypertension, obesity, severe hyperglycemia, and hypertriglyceridemia) and is thus considered an experimental animal model of atherosclerotic disease, we show that adenovirus-mediated klotho gene delivery can (1) ameliorate vascular endothelial dysfunction, (2) increase nitric oxide production, (3) reduce elevated blood pressure, and (4) prevent medial hypertrophy and perivascular fibrosis. Based on these findings, klotho gene delivery improves endothelial dysfunction through a pathway involving nitric oxide, and is involved in modulating vascular function (e.g., hypertension and vascular remodeling). Our findings establish the basis for the therapeutic potential of klotho gene delivery in atherosclerotic disease.  相似文献   

8.
Activation of p38 mitogen-activated protein (MAP) kinase (MAPK) has been implicated in the mechanism of cardiomyocyte (CMC) protection and injury. The p38 MAPK controversy may be related to differential effects of this kinase on apoptosis and necrosis. We have hypothesized that p38 MAPK-mediated F-actin reorganization promotes apoptotic cell death, whereas it protects from osmotic stress-induced necrotic cell death. Cultured neonatal rat CMCs were subjected to 2 h of simulated ischemia followed by reoxygenation. p38 MAPK activity measured by phosphorylation of MAP kinase-activated protein (MAPKAP) kinase 2 was increased during simulated ischemia and reoxygenation. This was associated with translocation of heat shock protein 27 (HSP27) from the cytosolic to the cytoskeletal fraction and F-actin reorganization. Cytochrome c release from mitochondria, caspase-3 activation, and DNA fragmentation were increased during reoxygenation. Robust lactate dehydrogenase (LDH) release was observed under hyposmotic (140 mosM) reoxygenation. The p38 MAPK inhibitor SB-203580 abrogated activation of p38 MAPK, translocation of HSP27, and F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation. Conversely, SB-203580 enhanced LDH release during hyposmotic reoxygenation. The F-actin disrupting agent cytochalasin D inhibited F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation, whereas it enhanced LDH release during hyposmotic reoxygenation. When CMCs were incubated under the isosmotic condition for the first 15 min of reoxygenation, SB-203580 and cytochalasin D increased ATP content of CMCs and prevented LDH release after the conversion to the hyposmotic condition. These results suggest that F-actin reorganization mediated by activation of p38 MAPK plays a differential role in apoptosis and protection against osmotic stress-induced necrosis during reoxygenation in neonatal rat CMCs; however, the sarcolemmal fragility caused by p38 MAPK inhibition can be reversed during temporary blockade of physical stress during reoxygenation.  相似文献   

9.
We recently reported that coronary endothelial cell (CEC) dysfunction may contribute to the development of right ventricular (RV) hypertrophy (RVH) in monocrotaline (MCT)-induced pulmonary hypertensive rats. This present study investigated whether preservation of CEC function with garlic and its active metabolite allicin could abrogate RVH. Rats were fed with 1% raw garlic (RG)-supplemented diet 1 day or 3 wk before and 1 day after MCT injection, and changes in RV pressure (RVP), RVH, and CEC function were assessed 3 wk after MCT administration. In all cases, RG feeding significantly inhibited the development of RVP and RVH in these MCT rats. However, similar treatments with either boiled garlic (BG) or aged garlic (AG), which do not contain the active allicin metabolite, were ineffective. CEC function, assessed with acetylcholine-induced dilation as well as N(omega)-nitro-l-arginine methyl ester-induced constriction, revealed marked attenuation in right, but not left, coronary arteries of the MCT rats. This is consistent with our earlier report. Feeding of RG, but not BG or AG, preserved the CEC function and prevented the exaggerated vasoconstrictory responses of the MCT coronary arteries. There was no change in the coronary dilatory responses to a nitric oxide donor sodium nitroprusside. Further testings of vasoactivity to garlic extracts showed that only RG, but not BG or AG, elicited a potent, dose-dependent dilation on the isolated coronaries. Taken together, these findings show that the protective effect of garlic against the development of RVP and RVH in MCT-treated rats is probably mediated via its active metabolite allicin action on coronary endothelial function and vasoreactivity.  相似文献   

10.
11.
Rat ventricular myocytes have been isolated and cultured by two separate procedures. Using phase-contrast and electron microscopies, we illustrate that (a) definitive cell damage is produced when myocytes are exposed to xanthine oxidase--hypoxanthine and (b) purpurogallin between 0.25 and 1.0 mM prolongs survival of both myocyte preparations in a dose-dependent manner. The cytoprotection produced by 1 mM purpurogallin exceeds that given by 2 mM each of ascorbate, Trolox, and mannitol, or 24,200 IU superoxide dismutase/L and (or) 92,000 IU catalase/L. Furthermore, we noted, for the first time, that purpurogallin markedly protects rat aortic endothelial cells, a key target of free radical generation and attack. In contrast, Trolox has a negligible effect here. Mechanistically, we showed that purpurogallin inhibits urate formation by xanthine oxidase more potently than allopurinol. Also, the compound diminishes formation of superoxide-reduced cytochrome c. Therefore, purpurogallin is a potent protector of ventricular myocytes and aortic endothelial cells, both of which are important cells in the cardiovascular system.  相似文献   

12.
Normal cellular metabolism produces oxidants that are neutralized by the cells' antioxidant enzymes and antioxidants taken from outside. An imbalance between oxidant and antioxidant has been postulated to lead to the neurodegeneration in the ischemic condition. In this study, we have demonstrated the prevention or slowdown of neuronal injury in middle cerebral artery occlusion (MCAO) by sodium selenite. Rats were pretreated with 0.05, 0.1, and 0.2 mg/kg body wt of sodium selenite for 7 d. The rats of group I (sham) and group II (ischemia) were pretreated with physiological saline for 7 d. On d 8, MCAO was induced for 2 h in, the right side of brain of group II, III, IV, and V rats. Brains were dissect out after 22 h of reperfusion and washed with chilled physiological saline. The right cerebral hemisphere was used for the preparation of mitochondria. The activity of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and monoamine oxidase (MAO-A and MAO-B) was depleted significantly; conversely, the activity of poly(ADP-ribosyl) polymerase was elevated significantly as compared to the sham, and the pretreatment of the animals with different doses of sodium selenite has protected the activity of these enzymes significantly. The content of glutathione was decreased significantly, whereas the level of lipid peroxidation was increased significantly in the mitochondria of MCAO as compared to the sham group, and pretreatment with different doses of sodium selenite has protected their levels significantly as compared to the MCAO group. It is concluded that selenium, which is an essential part of our diet, might be helpful in protection against neurodegeneration in cerebral ischemia.  相似文献   

13.
It has been shown that nitric oxide (NO) protects from myocardial ischemia-reperfusion injury in animal models. The present study investigated whether administration of the NO substrate l-arginine protects against ischemia-reperfusion-induced endothelial dysfunction in humans. Forearm blood flow was measured with venous occlusion plethysmography in 16 healthy male subjects who were investigated on two occasions. Forearm ischemia was induced for 20 min followed by 60-min reperfusion. With the use of a crossover protocol, the subject received a 15-min intrabrachial artery infusion of l-arginine (20 mg/min) and vehicle (saline, n = 12 or d-arginine, n = 4) starting at 15 min of ischemia on two separate occasions. Compared with preischemia, endothelium-dependent increase in forearm blood flow induced by intra-arterial acetylcholine (3-30 microg/min) was significantly impaired at 15 and 30 min of reperfusion when the subjects received saline (P < 0.001). When the subjects received l-arginine, the acetylcholine-induced increase in forearm blood flow was not significantly affected by ischemia-reperfusion. The recovery of endothelium-dependent vasodilatation at 15- and 30-min reperfusion was significantly greater after administration of l-arginine than after saline (P < 0.05). d-Arginine did not affect the response to acetylcholine. Endothelium-independent vasodilatation to nitroprusside was not affected during reperfusion. These results demonstrate that the NO substrate l-arginine significantly attenuates ischemia-reperfusion-induced endothelial dysfunction in humans in vivo. This suggests that l-arginine may be useful as a therapeutic agent in the treatment of ischemia-reperfusion injury in humans.  相似文献   

14.
Earlier studies from the authors' laboratory showed that malnourishment induces alterations in the cardiovascular homeostasis increasing the basal mean arterial pressure and heart rate. In this study, the authors evaluated whether the sympathetic and parasympathetic efferent activities contribute to changes in the cardiovascular homeostasis through altered modulation of the arterial baroreflex of malnourished rats. After weaning, male Fischer rats were given 15% (Normal Protein--NP) or 6% (Low Protein--LP) protein diet for 35 d. The baroreflex gain and latency were evaluated before and after selective autonomic blockades in control and malnourished rats. It was observed that malnourishment affected the baroreflex gain in response to activation and deactivation of the arterial baroreflex. Moreover, malnourished rats showed increased baroreflex latency as compared to that of control rats. Regarding the autonomic efferent activity directed to the heart, the data showed increased sympathetic and decreased parasympathetic efferent activities in malnourished rats, and such alterations could be related to the observed changes in the arterial baroreflex gain as well as in the basal mean arterial pressure and heart rate.  相似文献   

15.
Atherosclerosis is associated with endothelial dysfunction and a heightened state of inflammation characterized, in part, by an increase in vascular myeloperoxidase and proteins modified by its principal oxidant, hypochlorous acid (HOCl). Here we examined whether probucol could protect against endothelial dysfunction induced by the two-electron oxidant HOCl. Hypochlorous acid eliminated endothelium-dependent relaxation of rabbit aorta, whereas endothelial function and tissue cGMP was preserved and elevated, respectively, in animals pretreated with probucol. Exogenously added probucol also protected against HOCl-induced endothelial dysfunction. In vitro, HOCl oxidized probucol in a two-phase process with rate constants k(1) = 2.7 +/- 0.3 x 10(2) and k(2) = 0.7 +/- 0.2 x 10(2) m(-1) s(-1) that resulted in a dose- and time-dependent accumulation of probucol-derived disulfoxide, 4,4'-dithiobis(2,6-di-tert-butyl-phenol) (DTBP), DTBP-derived thiosulfonate, disulfone, and sulfonic acid, together with 3,3',5,5'-tetra-tert-butyl-4,4'-diphenoquinone (DPQ) as determined by high performance liquid chromatography and mass spectrometry. Like HOCl, selected one-electron oxidants converted probucol into DTBP and DPQ. Also, dietary and in vitro added DTBP protected aortic rings from HOCl-induced endothelial dysfunction and in vitro oxidation by HOCl gave rise to the thiosulfonate, disulfone, and sulfonic acid intermediates and DPQ. However, the product profiles of the in vitro oxidation systems were different from those in aortas of rabbits receiving dietary probucol or DTBP +/- HOCl treatment. Together, the results show that both probucol and DTBP react with HOCl and protect against HOCl-induced endothelial dysfunction, although direct scavenging of HOCl is unlikely to be responsible for the vascular protection by the two compounds.  相似文献   

16.
The blood-brain barrier (BBB) is important physiologically. Pathologically, BBB disruption has been implicated in a wide spectrum of neurological disorders including Parkinson's disease (PD). Recent studies indicate that caffeine is protective against PD, but by poorly understood mechanisms. Using a MPTP neurotoxin model of PD we tested the hypothesis that the protective actions of caffeine were because of, at least in part, preventing MPTP-induced BBB dysfunction. FVB mice were pre-treated with caffeine (10 mg/kg, i.p.) or saline for 7 days prior to initiation of neurotoxin treatments; during the 7 days of neurotoxin treatment, caffeine or saline continued to be administered 10 min before each dose of MPTP (20 mg/kg, i.p.). Striatum (and for some studies hippocampus and cerebral cortex as well) were evaluated for BBB leakage, tight junction protein expression levels, integrity of dopaminergic neurons, and activation of astrocytes and microglia using immunostaining, immunoblotting and real-time PCR techniques. We found that caffeine blocked MPTP-induced decreases in numbers of tyrosine hydroxylase-positive dopaminergic neurons, increases in leakage of Evan's blue dye and FITC-albumin in striatum but not in cerebral cortex or hippocampus, decreases in levels of the tight junction proteins occludin and ZO-1, and increases in reactive gliosis. Our results suggest that caffeine might protect against PD and PD-like features in animal models, in part, by stabilizing the BBB.  相似文献   

17.
Nicotinamide N-methyltransferase (NNMT, EC 2.1.1.1.) plays an important role in the growth of many different tumours and is also involved in various non-neoplastic disorders. However, the presence and role of NNMT in the endothelium has yet to be specifically explored. Here, we characterized the functional activity of NNMT in the endothelium and tested whether NNMT regulates endothelial cell viability. NNMT in endothelial cells (HAEC, HMEC-1 and EA.hy926) was inhibited using two approaches: pharmacological inhibition of the enzyme by NNMT inhibitors (5-amino-1-methylquinoline – 5MQ and 6-methoxynicotinamide – JBSF-88) or by shRNA-mediated silencing. Functional inhibition of NNMT was confirmed by LC/MS/MS-based analysis of impaired MNA production. The effects of NNMT inhibition on cellular viability were analyzed in both the absence and presence of menadione.Our results revealed that all studied endothelial lines express relatively high levels of functionally active NNMT compared with cancer cells (MDA-MB-231). Although the aldehyde oxidase 1 enzyme was also expressed in the endothelium, the further metabolites of N1-methylnicotinamide (N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-3-carboxamide) generated by this enzyme were not detected, suggesting that endothelial NNMT-derived MNA was not subsequently metabolized in the endothelium by aldehyde oxidase 1. Menadione induced a concentration-dependent decrease in endothelial viability as evidenced by a decrease in cell number that was associated with the upregulation of NNMT and SIRT1 expression in the nucleus in viable cells. The suppression of the NNMT activity either by NNMT inhibitors or shRNA-based silencing significantly decreased the endothelial cell viability in response to menadione. Furthermore, NNMT inhibition resulted in nuclear SIRT1 expression downregulation and upregulation of the phosphorylated form of SIRT1 on Ser47. In conclusion, our results suggest that the endothelial nuclear NNMT/SIRT1 pathway exerts a cytoprotective role that safeguards endothelial cell viability under oxidant stress insult.  相似文献   

18.
19.
The present study investigated the protective effects of Ginkgo biloba extract (EGb 761) on rat liver mitochondrial damage induced by in vitro anoxia/reoxygenation. Anoxia/reoxygenation was known to impair respiratory activities and mitochondrial oxidative phosphorylation efficiency. ADP/O (2.57 +/- 0.11) decreased after anoxia/reoxygenation (1.75 +/- 0.09, p < .01), as well as state 3 and uncoupled respiration (-20%, p < .01), but state 4 respiration increased (p < .01). EGb 761 (50-200 microg/ml) had no effect on mitochondrial functions before anoxia, but had a specific dose-dependent protective effect after anoxia/reoxygenation. When mitochondria were incubated with 200 microg/ml EGb 761, they showed an increase in ADP/O (2.09 +/- 0.14, p < .05) and a decrease in state 4 respiration (-22%) after anoxia/reoxygenation. In EPR spin-trapping measurement, EGb 761 decreased the EPR signal of superoxide anion produced during reoxygenation. In conclusion, EGb 761 specially protects mitochondrial ATP synthesis against anoxia/reoxygenation injury by scavenging the superoxide anion generated by mitochondria.  相似文献   

20.
Yao X  Huang Y 《Life sciences》2000,66(1):PL13-PL19
Quaternary ammonium ions are common pharmacological blockers of K+ channels. This study examined the vasorelaxant effect of tetraoctylammonium ions (TOA+) in rat isolated aortic rings. TOA+ caused a concentration-dependent transient relaxation of endothelium-intact tissues. Pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 3x10(-5) M) or methylene blue (3 x 10(-6) M) or removal of the endothelium abolished the TOA+-induced relaxation. L-arginine (10(-3) M ) partially antagonized the effect of L-NAME. Glibenclamide (3x10(-6) M), charybdotoxin (CTX, 10(-7) M), indomethacin (10(-5) M), or atropine (3x10(-6) M) had no effect. Both TOA+ (10(-5) M)- and acetylcholine (ACh, 10(-5) M)-induced increase in tissue content of cyclic GMP was significantly attenuated by NG-nitro-L-arginine (L-NNA, 10(-4) M) and abolished in endothelium-denuded arteries. These results indicate that TOA+ induced endothelium-dependent relaxation which is likely mediated through nitric oxide but not other endothelium-derived factors. This relaxant action seems unique for TOA+ since other quaternary ammonium ions did not cause nitric oxide-dependent relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号