首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
The C-terminal 232-419 amino acids fragment of endonuclease Sau3AI has been successfully expressed in Escherichia coli with 6 His at its N-terminal. After purification and crystallization, one completed 2.8 A data set was collected using a Rigaku R-AXIS IV++ diffractometer. The plate-like crystals belong to orthorhombic space group P2(1)2(1)2(1) with the cell dimension of a = 34.75, b = 76.82, c = 123.59A and contain one molecule per asymmetric unit.  相似文献   

2.
The three-dimensional structure of the lambda repressor C-terminal domain (CTD) has been determined at atomic resolution. In the crystal, the CTD forms a 2-fold symmetric tetramer that mediates cooperative binding of two repressor dimers to pairs of operator sites. Based upon this structure, a model was proposed for the structure of an octameric repressor that forms both in the presence and absence of DNA. Here, we have determined the structure of the lambda repressor CTD in three new crystal forms, under a wide variety of conditions. All crystals have essentially the same tetramer, confirming the results of the earlier study. One crystal form has two tetramers bound to form an octamer, which has the same overall architecture as the previously proposed model. An unexpected feature of the octamer in the crystal structure is a unique interaction at the tetramer-tetramer interface, formed by residues Gln209, Tyr210 and Pro211, which contact symmetry-equivalent residues from other subunits of the octamer. Interestingly, these residues are also located at the dimer-dimer interface, where the specific interactions are different. The structures thus indicate specific amino acid residues that, at least in principle, when altered could result in repressors that form tetramers but not octamers.  相似文献   

3.
The BRCA1 C-terminal region contains a duplicated globular domain termed BRCT that is found within many DNA damage repair and cell cycle checkpoint proteins. The unique diversity of this domain superfamily allows BRCT modules to interact forming homo/hetero BRCT multimers, BRCT-non-BRCT interactions, and interactions with DNA strand breaks. The sequence and functional diversity of the BRCT superfamily suggests that BRCT domains are evolutionarily convenient interaction modules.  相似文献   

4.
DNA polymerases cannot synthesize DNA without a primer, and DNA primase is the only specialized enzyme capable of de novo synthesis of short RNA primers. In eukaryotes, primase functions within a heterotetrameric complex in concert with a tightly bound DNA polymerase α (Pol α). In humans, the Pol α part is comprised of a catalytic subunit (p180) and an accessory subunit B (p70), and the primase part consists of a small catalytic subunit (p49) and a large essential subunit (p58). The latter subunit participates in primer synthesis, counts the number of nucleotides in a primer, assists the release of the primer-template from primase and transfers it to the Pol α active site. Recently reported crystal structures of the C-terminal domains of the yeast and human enzymes’ large subunits provided critical information related to their structure, possible sites for binding of nucleotides and template DNA, as well as the overall organization of eukaryotic primases. However, the structures also revealed a difference in the folding of their proposed DNA-binding fragments, raising the possibility that yeast and human proteins are functionally different. Here we report new structure of the C-terminal domain of the human primase p58 subunit. This structure exhibits a fold similar to a fold reported for the yeast protein but different than a fold reported for the human protein. Based on a comparative analysis of all three C-terminal domain structures, we propose a mechanism of RNA primer length counting and dissociation of the primer-template from primase by a switch in conformation of the ssDNA-binding region of p58.  相似文献   

5.
KaiA, KaiB and KaiC constitute the circadian clock machinery in cyanobacteria, and KaiA activates kaiBC expression whereas KaiC represses it. Here we show that KaiA is composed of three functional domains, the N-terminal amplitude-amplifier domain, the central period-adjuster domain and the C-terminal clock-oscillator domain. The C-terminal domain is responsible for dimer formation, binding to KaiC, enhancing KaiC phosphorylation and generating the circadian oscillations. The X-ray crystal structure at a resolution of 1.8 A of the C-terminal clock-oscillator domain of KaiA from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 shows that residue His270, located at the center of a KaiA dimer concavity, is essential to KaiA function. KaiA binding to KaiC probably occurs via the concave surface. On the basis of the structure, we predict the structural roles of the residues that affect circadian oscillations.  相似文献   

6.
eIF5, a GTPase-activating protein (GAP) specific for eIF2, plays a critical role in pre-initiation complex assembly and correct AUG selection during eukaryotic translation initiation. eIF5 is involved in the formation of the multifactor complex (MFC), an important intermediate of the 43S pre-initiation complex. The C-terminal domain (CTD) of eIF5 functions as the structural core in the MFC assembly. Here we report the 1.5A crystal structure of eIF5-CTD, confirming that eIF5-CTD contains an atypical HEAT motif. In addition, analyzing the electrostatic potential and the distribution of conserved residues on the protein surface, we confirm and suggest some potential regions of interactions between eIF5-CTD and other eIFs. The structure of eIF5-CTD provides useful information in understanding the mechanism of the MFC assembly.  相似文献   

7.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind, and in some cases hydrolyze, peptidoglycans (PGNs) on bacterial cell walls. These molecules, which are highly conserved from insects to mammals, participate in host defense against both Gram-positive and Gram-negative bacteria. We report the crystal structure of the C-terminal PGN-binding domain of human PGRP-Ialpha in two oligomeric states, monomer and dimer, to resolutions of 2.80 and 1.65 A, respectively. In contrast to PGRPs with PGN-lytic amidase activity, no zinc ion is present in the PGN-binding site of human PGRP-Ialpha. The structure reveals that PGRPs exhibit extensive topological variability in a large hydrophobic groove, located opposite the PGN-binding site, which may recognize host effector proteins or microbial ligands other than PGN. We also show that full-length PGRP-Ialpha comprises two tandem PGN-binding domains. These domains differ at most potential PGN-contacting positions, implying different fine specificities. Dimerization of PGRP-Ialpha, which occurs through three-dimensional domain swapping, is mediated by specific binding of sodium ions to a flexible hinge loop, stabilizing the conformation found in the dimer. We further demonstrate sodium-dependent dimerization of PGRP-Ialpha in solution, suggesting a possible mechanism for modulating PGRP activity through the formation of multivalent adducts.  相似文献   

8.
The TonB-dependent complex of Gram-negative bacteria couples the inner membrane proton motive force to the active transport of iron.siderophore and vitamin B(12) across the outer membrane. The structural basis of that process has not been described so far in full detail. The crystal structure of the C-terminal domain of TonB from Escherichia coli has now been solved by multiwavelength anomalous diffraction and refined at 1.55-A resolution, providing the first evidence that this region of TonB (residues 164-239) dimerizes. Moreover, the structure shows a novel architecture that has no structural homologs among any known proteins. The dimer of the C-terminal domain of TonB is cylinder-shaped with a length of 65 A and a diameter of 25 A. Each monomer contains three beta strands and a single alpha helix. The two monomers are intertwined with each other, and all six beta-strands of the dimer make a large antiparallel beta-sheet. We propose a plausible model of binding of TonB to FhuA and FepA, two TonB-dependent outer-membrane receptors.  相似文献   

9.
The protein transports from the cell cytosol to the mitochondria matrix are carried out by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM) complexes. Tim44p is an essential mitochondrial peripheral membrane protein and a major component of TIM23 translocon. Tim44p can tightly associate with the inner mitochondrial membrane. To investigate the mechanism by which Tim44p functions in the TIM23 translocon to deliver the mitochondrial protein precursors, we have determined the crystal structure of the yeast Tim44p C-terminal domain to 3.2A resolution using the MAD method. The Tim44p C-terminal domain forms a monomer in the crystal structure and contains six alpha-helices and four antiparallel beta-strands. A large hydrophobic pocket was identified on the Tim44p structure surface. The N-terminal helix A1 is positively charged and the helix A1 protrudes out from the Tim44p main body.  相似文献   

10.
The crystal structure of the C-terminal domain of a hook-capping protein FlgD from the plant pathogen Xanthomonas campestris (Xc) has been determined to a resolution of ca 2.5 Å using X-ray crystallography. The monomer of whole FlgD comprises 221 amino acids with a molecular mass of 22.7 kDa, but the flexible N-terminus is cleaved for up to 75 residues during crystallization. The final structure of the C-terminal domain reveals a novel hybrid comprising a tudor-like domain interdigitated with a fibronectin type III domain. The C-terminal domain of XcFlgD forms three types of dimers in the crystal. In agreement with this, analytical ultracentrifugation and gel filtration experiments reveal that they form a stable dimer in solution. From these results, we propose that the Xc flagellar hook cap protein FlgD comprises two individual domains, a flexible N-terminal domain that cannot be detected in the current study and a stable C-terminal domain that forms a stable dimer.  相似文献   

11.
A crystal structure of the C-terminal domain of Escherichia coli UvrB (UvrB') has been solved to 3.0 A resolution. The domain adopts a helix-loop-helix fold which is stabilised by the packing of hydrophobic side-chains between helices. From the UvrB' fold, a model for a domain of UvrC (UvrC') that has high sequence homology with UvrB' has been made. In the crystal, a dimerisation of UvrB domains is seen involving specific hydrophobic and salt bridge interactions between residues in and close to the loop region of the domain. It is proposed that a homologous mode of interaction may occur between UvrB and UvrC. This interaction is likely to be flexible, potentially spanning > 50 A.  相似文献   

12.
Xu C  Song J  Ding Y  Yu F  Sun L  Tang L  Hu X  Zhang Z  He J 《Protein and peptide letters》2007,14(5):505-506
Sau3AI is a type II restriction endonuclease that recognizes the palindromic sequence 5'-GATC-3' and cleaves 5' to G residue on each strand. The E64A mutant full length protein was cloned and expressed in Escherichia coli. The purified (His) (6)-tagged protein has monomer and dimer fraction and was crystallized by the hanging-drop vapor-diffusion technique. The dimer protein crystals can diffract to 3.0A. resolution and the monomer protein crystals can diffract to better than 2.8A. resolution. One completed dataset has been collected and it shows that the monomer orthorhombic Sau3AI/E64A crystal is in space group C2221 with unit cell parameters (69.44, 197.60, 191.46, 90, 90, 90) and contains two molecules in one asymmetric unit.  相似文献   

13.
14.
Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an alpha/beta structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn(2+) coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn(2+)-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.  相似文献   

15.
16.
RIG-I recognizes molecular patterns in viral RNA to regulate the induction of type I interferons. The C-terminal domain (CTD) of RIG-I exhibits high affinity for 5' triphosphate (ppp) dsRNA as well as blunt-ended dsRNA. Structures of RIG-I CTD bound to 5'-ppp dsRNA showed that RIG-I recognizes the termini of dsRNA and interacts with the ppp through electrostatic interactions. However, the structural basis for the recognition of non-phosphorylated dsRNA by RIG-I is not fully understood. Here, we show that RIG-I CTD binds blunt-ended dsRNA in a different orientation compared to 5' ppp dsRNA and interacts with both strands of the dsRNA. Overlapping sets of residues are involved in the recognition of blunt-ended dsRNA and 5' ppp dsRNA. Mutations at the RNA-binding surface affect RNA binding and signaling by RIG-I. These results provide the mechanistic basis for how RIG-I recognizes different RNA ligands.  相似文献   

17.
Crk-II is a signaling adaptor protein that is involved in many cellular processes including apoptosis, proliferation, and differentiation. It has a modular domain architecture consisting of an Src homology 2 domain (SH2) followed by two Src homology 3 (SH3) domains. The structures and ligand-binding properties of the SH2 and the middle SH3 domains are well-characterized. Several studies suggest that the C-terminal SH3 domain plays an important regulatory role in the protein; however, no structural information is available on this domain, and relatively little is known about its binding partners. In the current work, we have solved the solution NMR structure of the C-terminal SH3 domain. The domain adopts the standard SH3 fold comprising a five-stranded beta barrel. In agreement with alignment and modeling studies, the structure indicates that the canonical-binding surface of the SH3 domain is unusually polar and suggests that this domain may not bind typical PXXP ligands or that it may bind them with reduced affinity. Thermodynamic and kinetic studies show that the domain folds in a reversible two-state manner and that the stability of the fold is similar to that observed for other SH3 domains. These studies offer some insight into the likely structural and thermodynamic consequences of point mutations in the cSH3 domain that are known to deregulate Crk-II function. Our results set the stage for a better understanding the role of the cSH3 domain in the context of the full-length protein.  相似文献   

18.
Sau3AI is a type II endonuclease that cleaves GATC sequences, producing sticky ends with 4-nucleotide 5'-overhangs. Its activity is inhibited by cytosine C5-methylation within the target sequence. In the N-terminus, Sau3AI exhibits sequence similarity to the GATC-specific single-strand nicking endonuclease MutH implicated in mismatch repair (Ban and Yang, 1998). Sequence analysis of Sau3AI and its homologs reveals that Sau3AI possesses an additional MutH-like domain in the C-terminus. Structure prediction suggests that the C-terminal domain lacks the endonuclease active site but retains all putative DNA-binding elements. As an illustration of these findings, a model of quaternary structure of Sau3AI complexed with the target DNA is presented. These predictions have implications for evolution, structure and function of bacterial DNA repair enzymes and restriction endonucleases.  相似文献   

19.
Bacteriophage Mu, which has a contractile tail, is one of the most famous genus of Myoviridae. It has a wide host range and is thought to contribute to horizontal gene transfer. The Myoviridae infection process is initiated by adhesion to the host surface. The phage then penetrates the host cell membrane using its tail to inject its genetic material into the host. In this penetration process, Myoviridae phages are proposed to puncture the membrane of the host cell using a central spike located beneath its baseplate. The central spike of the Mu phage is thought to be composed of gene 45 product (gp45), which has a significant sequence homology with the central spike of P2 phage (gpV). We determined the crystal structure of shortened Mu gp45Δ1-91 (Arg92–Gln197) at 1.5 Å resolution and showed that Mu gp45 is a needlelike structure that punctures the membrane. The apex of Mu gp45 and that of P2 gpV contained iron, chloride, and calcium ions. Although the C-terminal domain of Mu gp45 was sufficient for binding to the E. coli membrane, a mutant D188A, in which the Asp amino acid residue that coordinates the calcium ion was replaced by Ala, did not exhibit a propensity to bind to the membrane. Therefore, we concluded that calcium ion played an important role in interaction with the host cell membrane.  相似文献   

20.
Measles virus is a negative-sense, single-stranded RNA virus belonging to the Mononegavirales order which comprises several human pathogens such as Ebola, Nipah, and Hendra viruses. The phosphoprotein of measles virus is a modular protein consisting of an intrinsically disordered N-terminal domain (Karlin, D., Longhi, S., Receveur, V., and Canard, B. (2002) Virology 296, 251-262) and of a C-terminal moiety (PCT) composed of alternating disordered and globular regions. We report the crystal structure of the extreme C-terminal domain (XD) of measles virus phosphoprotein (aa 459-507) at 1.8 A resolution. We have previously reported that the C-terminal domain of measles virus nucleoprotein, NTAIL, is intrinsically unstructured and undergoes induced folding in the presence of PCT (Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S., and Canard, B. (2003) J. Biol. Chem. 278, 18638-18648). Using far-UV circular dichroism, we show that within PCT, XD is the region responsible for the induced folding of NTAIL. The crystal structure of XD consists of three helices, arranged in an anti-parallel triple-helix bundle. The surface of XD formed between helices alpha2 and alpha3 displays a long hydrophobic cleft that might provide a complementary hydrophobic surface to embed and promote folding of the predicted alpha-helix of NTAIL. We present a tentative model of the interaction between XD and NTAIL. These results, beyond presenting the first measles virus protein structure, shed light both on the function of the phosphoprotein at the molecular level and on the process of induced folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号