首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO)-based therapies decrease neointimal hyperplasia; however, studies have been performed only in male animal models. Thus, we sought to evaluate the effect of NO on vascular smooth muscle cells (VSMC) in vitro and neointimal hyperplasia in vivo based on sex and hormone status. In hormone-replete medium, male VSMC proliferated at greater rates than female VSMC. In hormone-depleted medium, female VSMC proliferated at greater rates than male VSMC. However, in both hormone environments, NO inhibited proliferation and migration to a greater extent in male compared to female VSMC. These findings correlated with greater G0/G1 cell cycle arrest and changes in cell cycle protein expression in male compared to female VSMC after exposure to NO. Next, the rat carotid artery injury model was used to assess the effect of NO on neointimal hyperplasia in vivo. Consistent with the in vitro data, NO was significantly more effective at inhibiting neointimal hyperplasia in hormonally intact males compared to females using weight-based dosing. An increased weight-based dose of NO in females was able to achieve efficacy equal to that in males. Surprisingly, NO was less effective at inhibiting neointimal hyperplasia in castrated animals of both sexes. In conclusion, these data suggest that NO inhibits neointimal hyperplasia more effectively in males compared to females and in hormonally intact compared to castrated rats, indicating that the effects of NO in the vasculature may be sex- and hormone-dependent.  相似文献   

2.
Nitric oxide (NO) limits formation of neointimal hyperplasia in animal models of arterial injury in large part by inhibiting vascular smooth muscle cell (VSMC) proliferation through cell cycle arrest. The ubiquitin-conjugating enzyme UbcH10 is responsible for ubiquitinating cell cycle proteins for proper exit from mitosis. We hypothesize that NO prevents VSMC proliferation, and hence neointimal hyperplasia, by decreasing levels of UbcH10. Western blotting and immunofluorescent staining showed that NO reduced UbcH10 levels in a concentration-dependent manner in VSMC harvested from the abdominal aortas of Sprague-Dawley rats. Treatment with NO or siRNA to UbcH10 decreased both UbcH10 levels and VSMC proliferation (P<0.001), while increasing UbcH10 levels by plasmid transfection or angiotensin II stimulation increased VSMC proliferation to 150% (P=0.008) and 212% (P=0.002) of control, respectively. Immunofluorescent staining of balloon-injured rat carotid arteries showed a ~4-fold increase in UbcH10 levels, which was profoundly decreased following treatment with NO. Western blotting of carotid artery lysates showed no UbcH10 in uninjured vessels, a substantial increase in the injury alone group, and a significant decrease in the injury+NO group (~3-fold reduction versus injury alone). Importantly, in vitro and in vivo, a marked increase in polyubiquitinated UbcH10 was observed in the NO-treated VSMC and carotid arteries, respectively, indicating that NO may be decreasing unmodified UbcH10 levels by increasing its ubiquitination. Central to our hypothesis, we report that NO decreases UbcH10 levels in VSMC in vitro and following arterial injury in vivo in association with increasing polyubiquitinated-UbcH10 levels. These changes in UbcH10 levels correlate with VSMC proliferation and neointimal hyperplasia, making UbcH10 a promising therapeutic target for inhibiting this proliferative disease.  相似文献   

3.
Type 2 diabetes mellitus (DM) and the metabolic syndrome, both characterized by insulin resistance, are associated with an accelerated form of atherosclerotic vascular disease and poor outcomes following vascular interventions. These vascular effects are thought to stem from a heightened inflammatory environment and reduced bioavailability of nitric oxide (NO). To better understand this process, we characterized the vascular injury response in the obese Zucker rat by examining the expression of adhesion molecules, the recruitment of inflammatory cells, and the development of intimal hyperplasia. We also evaluated the ability of exogenous NO to inhibit the sequela of vascular injury in the metabolic syndrome. Obese and lean Zucker rats underwent carotid artery balloon injury. ICAM-1 and P-selectin expression were increased following injury in the obese animals compared with the lean rats. The obese rats also responded with increased macrophage infiltration of the vascular wall as well as increased neointima formation compared with their lean counterparts (intima/media = 0.91 vs. 0.52, P = 0.001). After adenovirus-mediated inducible NO synthase (iNOS) gene transfer, ICAM-1, P-selectin, inflammatory cell influx, and oxidized low-density lipoprotein (LDL) receptor expression were all markedly reduced versus injury alone. iNOS gene transfer also significantly inhibited proliferative activity (54% and 73%; P < 0.05) and neointima formation (53% and 67%; P < 0.05) in lean and obese animals, respectively. The vascular injury response in the face of obesity and the metabolic syndrome is associated with increased adhesion molecule expression, inflammatory cell infiltration, oxidized LDL receptor expression, and proliferation. iNOS gene transfer is able to effectively inhibit this heightened injury response and reduce neointima formation in this proinflammatory environment.  相似文献   

4.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

5.
Nitric oxide (NO)-based therapies effectively inhibit neointimal hyperplasia in animal models of arterial injury and bypass grafting, but are not available clinically. We created a simple, effective, locally applied NO-eluting therapy to prevent restenosis after vascular procedures. We investigated the efficacy of perivascular delivery of two distinctly different diazeniumdiolate NO donors, 1-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate (PROLI/NO) (short half-life) and diazeniumdiolated poly(acrylonitrile) (PAN/NO) (long half-life), in powder or gel form (30% poloxamer 407), at inhibiting neointimal hyperplasia using the rat carotid artery injury model. Two weeks postinjury, all of the NO-eluting therapies successfully reduced neointimal hyperplasia. However, most dramatically, PROLI/NO powder reduced intimal area by 91.2% (p<0.05) versus injury alone. PROLI/NO powder was noted to reduce the medial area (40.2% vs injury alone, p<0.05), whereas other groups showed no such effect. Three days postinjury, each NO treatment group significantly reduced cellular proliferation. However, inflammatory markers revealed a distinct pattern: PAN/NO groups displayed increased leukocyte infiltration (p<0.05), whereas PROLI/NO groups displayed less macrophage infiltration (p<0.05). In conclusion, perivascular delivery of diazeniumdiolate NO donors in powder or gel form effectively inhibits neointimal hyperplasia. Application of short-acting PROLI/NO powder most effectively inhibited neointimal hyperplasia and inflammation and may represent a simple, clinically applicable NO-eluting therapy to prevent neointimal hyperplasia and restenosis after open vascular interventions.  相似文献   

6.
Intercellular communication between mesenchymal stem cells (MSCs) and their target cells in the perivascular environment is modulated by exosomes derived from MSCs. However, the potential role of exosome‐mediated microRNA transfer in neointimal hyperplasia remains to be investigated. To evaluate the effects of MSC‐derived exosomes (MSC‐Exo) on neointimal hyperplasia, their effects upon vascular smooth muscle cell (VSMC) growth in vitro and neointimal hyperplasia in vivo were assessed in a model of balloon‐induced vascular injury. Our results showed that MSC‐Exo were internalised by VSMCs and inhibited proliferation and migration in vitro. Further analysis revealed that miR‐125b was enriched in MSC‐Exo, and repressed the expression of myosin 1E (Myo1e) by targeting its 3? untranslated region. Additionally, MSC‐Exo and exosomally transferred miR‐125b repressed Myo1e expression and suppressed VSMC proliferation and migration and neointimal hyperplasia in vivo. In summary, our findings revealed that MSC‐Exo can transfer miR‐125b to VSMCs and inhibit VSMC proliferation and migration in vitro and neointimal hyperplasia in vivo by repressing Myo1e, indicating that miR‐125b may be a therapeutic target in the treatment of vascular diseases.  相似文献   

7.
We investigated the effects of TH-142177 (N-n-butyl-N-[2'-(1-H-tetrazole-5-yl) biphenyl-4-yl]-methyl-(N-carboxy methyl-benzylamino)-acetamide), a novel selective antagonist of angiotensin II type 1-receptor (AT1-R) on angiotensin II (AII)-induced proliferation and migration of vascular smooth muscle cells (VSMC), and on neointimal formation in the rat carotid artery after balloon injury, and on the intracellular signaling by the stimulation of AT1-R. High affinity AII receptor sites were detected in rat VSMC by the use of [125I]Sar1,Ile8-AII. TH-142177 and losartan competed with [125I]Sar1,Ile8-AII for the binding sites in VSMC in a monophasic manner, although PD123177, a selective antagonist of angiotensin II type 2-receptor (AT2-R), had little inhibitory effect, demonstrating the predominant existence of AT1-R in rat VSMC. TH-142177 prevented AII-induced DNA synthesis and migration, with a significant inhibition of 74 and 55%, respectively, at the concentration of 100 nM. AII-induced activation of p21ras, mitogen-activated protein kinase (p42MAPK and p44MAPK), and protein kinase C was significantly (50-78%) inhibited by TH-142177 (100 nM), suggesting that the activation of these enzymes is mediated through the stimulation of AT1-R. Balloon-injured left carotid arteries in rats showed extensive neointimal thickening, and TH-142177 (3 mg/kg) brought out a marked decrease in the neointimal thickening after balloon injury. In conclusion, TH-142177 inhibited AII-induced proliferation and migration of rat VSMC and neointimal formation in the carotid artery after balloon injury, and these effects may be related, in part, to the suppression of ras, p42MAPK and p44MAPK, and protein kinase C activities through the blockade of AT1-R. Thus, TH-142177 may have therapeutic potential for the treatment of vascular diseases such as atherosclerosis and restenosis.  相似文献   

8.
We reported that carbon monoxide (CO) generated through heme oxygenase (HO) inhibits mitogen-induced proliferation of vascular smooth muscle cells (VSMCs). We report that balloon injury induces HO-1, the stress-inducible isozyme of HO, in VSMCs and inhibits neointimal formation through the action of endogenous CO. Northern blot analysis and immunohistochemistry revealed that HO-1 is markedly induced in the media as early as 1 day after injury, whereas only a little expression was detected in the intact carotid artery. The neointimal proliferative changes were augmented or inhibited by the HO inhibitors or inducer, respectively, and effects of these interventions were not altered by suppression of endogenous nitric oxide (NO), if any. To elucidate the mechanisms by which HO controls the proliferative changes, effects of alterations in the HO reaction were examined by determining angiotensin II-elicited VSMC proliferation in vitro: the HO inducer attenuated and its inhibitor restored the proliferative response to angiotensin II (1 nM and 100 nM). Hemoglobin, a reagent trapping both NO and CO, but not met-hemoglobin, which can capture NO but not CO, augmented the proliferative response. These data suggest that endogenous CO serves as a protective factor that limits the excessive VSMC proliferation associated with vascular diseases.  相似文献   

9.
There are several reports indicating that nitric oxide (NO) plays a role in the kidney hyperfiltration seen in the early stages of diabetes mellitus (DM). Whole kidney GFR and single nephron GFR (SNGFR) have been reported to decrease after nitric oxide synthase (NOS) inhibition. To date, no direct, in vivo, quantitative NO measurements have been made within the kidney in any models of early diabetes. To assess the possible association of changes in tubular fluid nitric oxide concentrations (TF [NO]) with early diabetes, a specially modified NO electrode with a tip diameter of about 7 microm was used to measure NO in single tubules in seven rodent groups. In the Sprague-Dawley (SD) rat model, TF [NO] increased by 50% after streptozotocin (STZ) induced DM1. In the B6129G2/J mouse, control TF [NO] was more than twice the rat control value and fell by 50% after STZ treatment. In three other groups of mice-db/db (B6.Cg-m+/+Lepr(db)/J) Type II diabetic (DM2) mouse, db/m (its heterozygote), and the corresponding wild type (WT)-TF [NO] was also much higher than in the rat, and unlike the B6129G2/J STZ diabetic mouse, did not change after the onset of diabetes. Blood glucose concentrations were similar in the three diabetic groups. Accordingly, in different rodent models of diabetes, in vivo TF [NO], measured in real time, varies significantly in control animals and directionally in different models of DM1 and DM2.  相似文献   

10.
11.
Vascular smooth muscle cell (VSMC) migration and proliferation are critical steps in the pathogenesis of atherosclerosis, post-angioplasty restenosis, neointimal hyperplasia, and chronic allograft rejection. Extracellular nucleotides are known to influence both migration and proliferation of VSMC. Although it is well established that vascular endothelial Cd39/ENTPD1 regulates blood nucleotide concentrations, whether Cd39 associated with VSMC also impacts vascular wall pathology has not been investigated. The objective of this paper is to determine levels of expression of Cd39 on VSMC and functional consequences of gene deletion in vitro and in vivo. Cd39 is the major ectonucleotidase in VSMC, as shown by substantive decreases in ecto-ATPase and -ADPase activity in Cd39-null cells compared to wild type. Significant decreases in neointimal lesion formation are observed in Cd39-null mice at 21 days post arterial balloon injury. Stimulated Cd39-null VSMC have pronounced proliferative responses in vitro. However, using Transwell systems, we show that Cd39-null VSMC fail to migrate in response to ATP, UTP, and PDGF. Cd39 is the dominant ectonucleotidase expressed by VSMC. Deletion of Cd39 in mice results in decreased neointimal formation after vascular injury and is associated with impaired VSMC migration responses in vitro.  相似文献   

12.
The 11S proteasome activator (PA28) binds to the 20S proteasome and increases its ability to degrade small peptides. Expression of PA28 subunits (α, β, γ) is induced by interferon-γ stimulation. Inflammation plays a role in the development of neointimal hyperplasia, and we have previously shown that nitric oxide (NO) reduces neointimal hyperplasia in animal models and 26S proteasome activity in rat aortic smooth muscle cells (RASMC). Here, we show that PA28 increased 26S proteasome activity in RASMC, as measured by a fluorogenic assay, and the NO donor S-nitroso N-acetylpenicillamine significantly inhibits this activation. This effect was abrogated by the reducing agents dithiothreitol and HgCl(2), suggesting that NO affects the activity of PA28 through S-nitrosylation. NO did not appear to affect PA28 levels or intracellular localization in RASMC in vitro. Three days following rat carotid artery balloon injury, levels of PA28α, β and γ subunits were decreased compared to uninjured control arteries (n=3/group) in vivo. The NO donor proline NONOate further decreased PA28α, β and γ levels by 1.9-, 2.3- and 3.4-fold, respectively, compared to uninjured control arteries. Fourteen days following arterial injury, levels of PA28α, β and γ subunits were increased throughout the arterial wall compared to uninjured control arteries, but were greatest for the α and β subunits. NO continued to decrease the levels of all three PA28 subunits throughout the arterial wall at this time point. Since the PA28 subunits are involved in the breakdown of peptides during inflammation, PA28 inhibition may be one mechanism by which NO inhibits neointimal hyperplasia.  相似文献   

13.
D‐4F, an apolipoprotein A‐I (apoA‐I) mimetic peptide, possesses distinctly anti‐atherogenic effects. However, the biological functions and mechanisms of D‐4F on the hyperplasia of vascular smooth muscle cells (VSMCs) remain unclear. This study aimed to determine its roles in the proliferation and migration of VSMCs. In vitro, D‐4F inhibited VSMC proliferation and migration induced by ox‐LDL in a dose‐dependent manner. D‐4F up‐regulated heme oxygenase‐1 (HO‐1) expression in VSMCs, and the PI3K/Akt/AMP‐activated protein kinase (AMPK) pathway was involved in these processes. HO‐1 down‐regulation with siRNA or inhibition with zinc protoporphyrin (Znpp) impaired the protective effects of D‐4F on the oxidative stress and the proliferation and migration of VSMCs. Moreover, down‐regulation of ATP‐binding cassette transporter A1 (ABCA1) abolished the activation of Akt and AMPK, the up‐regulation of HO‐1 and the anti‐oxidative effects of D‐4F. In vivo, D‐4F restrained neointimal formation and oxidative stress of carotid arteries in balloon‐injured Sprague Dawley rats. And inhibition of HO‐1 with Znpp decreased the inhibitory effects of D‐4F on neointimal formation and ROS production in arteries. In conclusion, D‐4F inhibited VSMC proliferation and migration in vitro and neointimal formation in vivo through HO‐1 up‐regulation, which provided a novel prophylactic and therapeutic strategy for anti‐restenosis of arteries.  相似文献   

14.
15.
Dysregulation of HSG triggers vascular proliferative disorders   总被引:27,自引:0,他引:27  
Chen KH  Guo X  Ma D  Guo Y  Li Q  Yang D  Li P  Qiu X  Wen S  Xiao RP  Tang J 《Nature cell biology》2004,6(9):872-883
Vascular proliferative disorders, such as atherosclerosis and restenosis, are the most common causes of severe cardiovascular diseases, but a common molecular mechanism remains elusive. Here, we identify and characterize a novel hyperplasia suppressor gene, named HSG (later re-named rat mitofusin-2). HSG expression was markedly reduced in hyper-proliferative vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rat arteries, balloon-injured Wistar Kyoto rat arteries, or ApoE-knockout mouse atherosclerotic arteries. Overexpression of HSG overtly suppressed serum-evoked VSMC proliferation in culture, and blocked balloon injury induced neointimal VSMC proliferation and restenosis in rat carotid arteries. The HSG anti-proliferative effect was mediated by inhibition of ERK/MAPK signalling and subsequent cell-cycle arrest. Deletion of the p21(ras) signature motif, but not the mitochondrial targeting domain, abolished HSG-induced growth arrest, indicating that rHSG-induced anti-proliferation was independent of mitochondrial fusion. Thus, rHSG functions as a cell proliferation suppressor, whereas dysregulation of rHSG results in proliferative disorders.  相似文献   

16.
Molecular Biology Reports - The Nile rat (Arvicanthis niloticus) is a novel diurnal carbohydrate-sensitive rodent useful for studies on type 2 diabetes mellitus (T2DM) and the metabolic syndrome....  相似文献   

17.
The major cause of end-stage renal disease is the diabetic nephropathy. Oxidative stress contributes to the development of type II diabetes mellitus (T2DM). In this study we have evaluated the effect of a diet with a new standardized of red orange and lemon extract (RLE) rich in anthocyanins (ANT) in the progression of the kidney disease on Zucker diabetic fatty rats. Oxidative stress and renal function were analyzed. In diabetic rats, the RLE restored the blood glucose levels, body weight, and normalized the reactive oxygen species (ROS) total pathways. The kidney inflammation, in diabetic rats, has not shown significant change, showing that the oxidative stress rather than to inflammatory processes is a triggering factor in the renal complication associated with T2DM. Therefore, the administration of the RLE prevents this complication and this effect could be related to the inhibition of ROS production.  相似文献   

18.
研究apelin-13对血管平滑肌细胞(vascular smooth muscle cell, VSMC)增殖和迁移的影响及其作用机制.用免疫印迹分析检测apelin-13对VSMC增殖、迁移以及分化相关基因表达的影响,结果表明,apelin-13能以时间和浓度依赖的方式诱导VSMC增殖和迁移相关基因cyclin D1和MMP-2表达,促进细胞增殖和迁移;同时使VSMC分化标志基因SM22α和SM α-actin表达水平降低.而且,用鬼笔环肽对细胞骨架进行染色的结果显示,apelin-13可以促进VSMC从收缩表型向增殖表型转化.体内实验也表明,敲低apelin可抑制球囊损伤诱导的新生内膜形成,提示apelin-13在体内具有促进血管新生内膜形成的作用.总之,本文结果表明,apelin 13通过调节VSMC增殖、迁移以及分化基因表达,进而促进其从分化型向增殖型转化,并向内膜下迁移和增殖.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号