首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uenaka H  Wada M  Kadota A 《Planta》2005,222(4):623-631
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed, which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches, blue light of a fluence rate higher than 6 μmol m−2 s−1 for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation period. The number of branches also increased when red light was applied together with the blue light, although red light alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation. A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens.  相似文献   

2.
Phototropism and hypocotyl growth inhibition are modulated by the coaction of different blue-light photoreceptors and their signaling pathways. How seedlings integrate the activities of the different blue-light photoreceptors to coordinate these hypocotyl growth responses is still unclear. We have used time-lapse imaging and a nontraditional mathematical approach to conduct a detailed examination of phototropism in wild-type Arabidopsis and various blue-light photoreceptor mutants. Our results indicate that high fluence rates of blue light (100 micro mol m(-)(2) s(-)(1)) attenuate phototropism through the coaction of the phototropin and cryptochrome blue-light photoreceptors. In contrast, we also demonstrate that phototropins and cryptochromes function together to enhance phototropism under low fluence rates (<1.0 micro mol m(-)(2) s(-)(1)) of blue light. Based on our results, we hypothesize that phototropins and cryptochromes regulate phototropism by coordinating the balance between stimulation and inhibition of growth of the hypocotyl depending on the fluence rate of blue light.  相似文献   

3.
Chloroplast relocation in mesophyll cells of Arabidopsis thaliana was observed microscopically and analyzed by microbeam irradiation. Chloroplasts located along the anticlinal walls in dark-adapted cells. When part of a cell was irradiated with a microbeam of high fluence rate blue light (B) simultaneously with background red light (R) on the whole cell, the chloroplasts moved towards the B-irradiated area, but did not enter the beam. The background R illumination activated cytoplasmic motility as well as chloroplast movement. Without R illumination, there was little chloroplast relocation. In light-adapted cells in which the chloroplasts were spread over the cell surface perpendicular to the incident light, R-illumination had the same effect. Under background R, the chloroplasts moved out of the area irradiated with a B microbeam of 8 or 30 W m(-2) (avoidance response), but chloroplasts outside the beam moved towards the area irradiated with the B microbeam (accumulation response). These results suggest that the signals for accumulation and avoidance responses were generated in a single cell by high fluence rate B. cry1cry2, npq1 and nph1 mutants showed B-induced chloroplast relocation. Both the accumulation and avoidance responses were observed in all the mutants, although in the nph1 mutant, the sensitivity of accumulation movement was slightly lower than that of the wild type. We discuss the possible photoreceptor for B-induced chloroplast relocation.  相似文献   

4.
When prothalli ofAdiantum capillus-veneris L. were kept for 2 d in the dark, chloroplasts gathered along the anticlinal walls (Kagawa and Wada, 1994, J Plant Res 107: 389–398). In these dark-adapted prothallial cells, irradiation with a microbeam (10 gm in diameter) of red (R) or blue light (B) for 60 s moved the chloroplasts towards the irradiated locus during a subsequent dark period. Chloroplasts located less than 20 gm from the center of the R microbeam (18 J·m–2) moved towards the irradiated locus. The higher the fluence of the light, the greater the distance from which chloroplasts could be attracted. The B microbeam was less effective than the R microbeam. Chloroplasts started to move anytime up to 20 min after the R stimulus, but with the B microbeam the effect of the stimulus was usually apparent within 10 min after irradiation. The velocity of chloroplast migration was independent of light-fluence in both R and B and was about - 0.3 m·min–1 between 15 min and 30 min after irradiation. Whole-cell irradiation with far-red light immediately after R- and B-microbeam irradiations demonstrated that these responses were mediated by phytochrome and a blue-light-absorbing pigment, respectively. Sequential treatment with R and B microbeams, whose fluence rates were less than the threshold values when applied separately, resulted in an additive effect and induced chloroplast movement, strongly suggesting that signals from phytochrome and the blue-light-absorbing pigment could interact at some point before the induction of chloroplast movement.Abbreviations B blue light - FR far-red light - IR infrared light - R red light  相似文献   

5.
The leaf of kidney bean (Phaseolus vulgaris) moves in response to blue light. The movement is induced by a decrease in the turgor pressure of pulvinar motor cells on the irradiated side. In this study, we investigated the initial event of the movement with respect to function of phototropin and the plasma membrane H+-ATPase in the motor cells. The results indicated that, in dark conditions, phototropin existed in a dephosphorylated state and the H+-ATPase existed in a phosphorylated state. A pulse of blue light (30 s) induced the phosphorylation of phototropin and the dephosphorylation of the H+-ATPase as determined by the binding behavior of 14-3-3 protein. Phototropin phosphorylation occurred rapidly, followed by the transient gradual dephosphorylation of the H+-ATPase. When the specific flavoprotein inhibitor diphenyleneiodonium and the protein kinase inhibitors K-252a and staurosporine were administered to pulvinar cells, both phototropin phosphorylation and H+-ATPase dephosphorylation were inhibited. The phosphorylation and dephosphorylation exhibited similar fluence rate dependencies to blue light. These results indicated that phototropin may function upstream of the plasma membrane H+-ATPase and decrease the activity of H+-ATPase by dephosphorylation. We provide evidence for the existence of three kinds of phototropins in pulvinar motor cells.  相似文献   

6.
Blue light-induced phototropism in Adiantum protonemata wasinvestigated with microbeam irradiation. Brief irradiation withblue light effectively induced a phototropic response when itwas applied to a half-side of the apical 200d µm regionof a protonema. The phototropic response was partly reversedby the subsequent far-red light irradiation but the full reversalof the response was not observed even when the fluence of far-redlight was increased. In the far-red reversible part of the response,blue/far-red photoreversibility was repeatedly observed. Thus,both phytochrome and a blue light-absorbing pigment (other thanphytochrome) seem to be involved in the blue light-induced phototropicresponse in Adiantum protonemata. Furthermore, detailed studiesof the far-red light effect on the fluence-response curve forblue lightinduced phototropism revealed that the concomitantmediation by the two receptors was limited to the response inthe relatively higher fluence range of blue light and that theblue light-absorbing pigment alone was responsible in the lowerfluence range. In the higher fluence range, the response mediatedby the blue light-absorbing pigment became saturated and thephytochrome response became evident, indicating a differencein the sensitivities of the two receptor pigments to blue light. When various regions of half-sides of protonemata were irradiatedwith a blue microbeam of 10 µm width, irradiation at theapical 5–25 µm region was most effective both forphytochrome- and blue light-absorbing pigment-mediated response,indicating that the site of blue light perception is almostidentical for each response. (Received July 14, 1986; Accepted September 26, 1986)  相似文献   

7.
The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin. Heterologous expression studies have shown that both domains function as FMN-binding sites. Although three plant blue light photoreceptors, cry1, cry2, and phototropin, have been identified to date, the photochemical reactions underlying photoactivation of these light sensors have not been described so far. Herein, we demonstrate that the LOV domains of Avena sativa phototropin undergo a self-contained photocycle characterized by a loss of blue light absorbance in response to light and a spontaneous recovery of the blue light-absorbing form in the dark. Rate constants and quantum efficiencies for the photoreactions indicate that LOV1 exhibits a lower photosensitivity than LOV2. The spectral properties of the photoproduct produced for both LOV domains are unrelated to those found for photoreduced flavins and flavoproteins, but are consistent with those of a flavin-cysteinyl adduct. Flavin-thiol adducts are generally short-lifetime reaction intermediates formed during the flavoprotein-catalyzed reduction of protein disulfides. By site-directed mutagenesis, we have identified several amino acid residues within the putative chromophore binding site of LOV1 and LOV2 that appear to be important for FMN binding and/or the photochemical reactivity. Among those is Cys39, which plays an important role in the photochemical reaction of the LOV domains. Replacement of Cys39 with Ala abolished the photochemical reactions of both LOV domains. We therefore propose that light sensing by the phototropin LOV domains occurs via the formation of a stable adduct between the FMN chromophore and Cys39.  相似文献   

8.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

9.
10.
Phototropin, a plant blue light photoreceptor, mediates important blue light responses such as phototropism, chloroplast positioning and stomatal opening in higher plants. In Arabidopsis thaliana, two phototoropins, phototropin 1 and 2, are known. Recently, in the unicellular green alga, Chlamydomonas reinhardtii, a phototropin homolog was identified. It exhibits photochemical properties similar to those of higher plant phototropins and is involved in multiple steps of the sexual life cycle of Chlamydomonas. Here, we expressed Chlamydomonas phototropin in Arabidopsis to examine whether it is active in a distantly related plant species. The Arabidopsis mutant deficient in both phototropin 1 and 2 was transformed with a vector containing Chlamydomonas phototropin cDNA fused to a cauliflower mosaic virus 35S promoter. The resulting lines were classified into high, medium and low expressers based on RNA gel blot and immunoblot analyses. Typical phototropin responses were restored in high expression lines. These results demonstrate that Chlamydomonas phototropin is functional in higher plants. Hence, the basic mechanism of phototropin action is highly conserved, even though its apparent physiological functions are quite diverse.  相似文献   

11.
Phototropins, originally detected by their blue light-dependent autophosphorylation, are plant photoreceptors involved in several blue light responses such as phototropism, chloroplast relocation, leaf expansion, rapid inhibition of hypocotyl growth, and stomatal opening. Three domains have been identified in phototropin sequences, two chromophore binding domains (LOV1 and LOV2) and a kinase domain. We describe here two additional domains, the N-terminus upstream of LOV1 and the hinge region between LOV1 and LOV2, as the regions for autophosphorylation; the phosphorylation sites were identified by site-directed mutagenesis as S27, S30, S274, S300, S317, S325, S332, and S349 of the PHOT1a sequence of Avena sativa. Investigation of the autophosphorylation in vivo revealed that serines close to the LOV1 domain are phosphorylated at lower fluence of blue light than the serines close to the LOV2 domain. Recovery of phosphorylation in vivo during a dark period after saturating irradiation is caused by dephosphorylation rather than by degradation of the phosphorylated form and new synthesis of nonphosphorylated phototropin. The results were obtained by a combination of autophosphorylation of phototropin with phosphorylation of recombinant domains by protein kinase A, which turned out to have the same site specificity as the phototropin kinase, followed by proteolysis and separation of phosphopeptides. With the knowledge of the phosphorylation sites, the physiological and biochemical consequences of autophosphorylation can now be approached by site-directed mutagenesis of phototropins.  相似文献   

12.
13.
Han IS  Tseng TS  Eisinger W  Briggs WR 《The Plant cell》2008,20(10):2835-2847
It has been known for decades that red light pretreatment has complex effects on subsequent phototropic sensitivity of etiolated seedlings. Here, we demonstrate that brief pulses of red light given 2 h prior to phototropic induction by low fluence rates of blue light prevent the blue light-induced loss of green fluorescent protein-tagged phototropin 1 (PHOT1-GFP) from the plasma membrane of cortical cells of transgenic seedlings of Arabidopsis thaliana expressing PHOT1-GFP in a phot1-5 null mutant background. This red light effect is mediated by phytochrome A and requires approximately 2 h in the dark at room temperature to go to completion. It is fully far red reversible and shows escape from photoreversibility following 30 min of subsequent darkness. Red light-induced inhibition of blue light-inducible changes in the subcellular distribution of PHOT1-GFP is only observed in rapidly elongating regions of the hypocotyl. It is absent in hook tissues and in mature cells below the elongation zone. We hypothesize that red light-induced retention of the PHOT1-GFP on the plasma membrane may account for the red light-induced increase in phototropic sensitivity to low fluence rates of blue light.  相似文献   

14.
The effects of preirradiation with blue light on the shift of the fluence-response curve for the first and the second positive curvatures were examined in Pilobolus crystallinus (Wiggers) Tode sporangiophores. A 1-min preirradiation with blue light at 47 or 960 nmol·m-2 lowered the fluence-response curve for the first positive curvature and shifted the peak to a higher fluence. The fluence-response curve was shifted back to a lower fluence when a dark period was inserted between the preirradiation and the curvature-inducing light. This shift back to lower fluence was biphasic when the fluence was high (960 nmol · m-2), indicating the participation of two components in the phototropic reaction for the first positive curvature.The fluence-response curve for the second positive curvature did not seem to be shifted to a higher fluence region when fluence was varied by varying exposure time. However, the fluence-response curve obtained by varying the fluence rate of a 20-min irradiation period indicated that the second positive curvature was also shifted to a higher-fluence region by preirradiation with blue light. A small shoulder appeared on the fluence-response curve when preirradiation at a high fluence rate was given.Abbreviations BL blue light - CIL curvature-inducing light  相似文献   

15.
Under low light conditions, chloroplasts gather at a cell surface to maximize light absorption for efficient photosynthesis, which is called the accumulation response. Phototropin1 (phot1) and phototropin2 (phot2) were identified as blue light photoreceptors in the accumulation response that occurs in Arabidopsis thaliana and Adiantum capillus-veneris with neochrome1 (neo1) as a red light photoreceptor in A. capillus-veneris. However, the signal molecule that is emitted from the photoreceptors and transmitted to the chloroplasts is not known. To investigate this topic, the accumulation response was induced by partial cell irradiation with a microbeam of red, blue and far-red light in A. capillus-veneris gametophyte cells. Chloroplasts moved towards the irradiated region and were able to sense the signal as long as its signal flowed. The signal from neo1 had a longer life than the signal that came from phototropins. When two microbeams with the same wavelength and the same fluence rate were placed 20 μm apart from each other and were applied to a dark-adapted cell, chloroplasts at an equidistant position always moved towards the center (midpoint) of the two microbeams, but not towards either one. This result indicates that chloroplasts are detecting the concentration of the signal but not the direction of signal flow. Chloroplasts repeatedly move and stop at roughly 10 s intervals during the accumulation response, suggesting that they monitor the intermittent signal waves from photoreceptors.  相似文献   

16.
López-Juez E  Bowyer JR  Sakai T 《Planta》2007,227(1):113-123
Leaf palisade cell development and the composition of chloroplasts respond to the fluence rate of light to maximise photosynthetic light capture while minimising photodamage. The underlying light sensory mechanisms are probably multiple and remain only partially understood. Phototropins (PHOT1 and PHOT2) are blue light receptors regulating responses which are light quantity-dependent and which include the control of leaf expansion. Here we show that genes for proteins in the reaction centres show long-term responses in wild type plants, and single blue photoreceptor mutants, to light fluence rate consistent with regulation by photosynthetic redox signals. Using contrasting intensities of white or broad-band red or blue light, we observe that increased fluence rate results in thicker leaves and greater number of palisade cells, but the anticlinal elongation of those cells is specifically responsive to the fluence rate of blue light. This palisade cell elongation response is still quantitatively normal in fully light-exposed regions of phot1 phot2 double mutants under increased fluence rate of white light. Plants grown at high light display elevated expression of RBCS (for the Rubisco small subunit) which, together with expected down-regulation of LHCB1 (for the photosynthetic antenna primarily of photosystem II), is also observed in phot double mutants. We conclude that an unknown blue light photoreceptor, or combination thereof, controls the development of a typical palisade cell morphology, but phototropins are not essential for either this response or acclimation-related gene expression changes. Together with previous evidence, our data further demonstrate that photosynthetic (chloroplast-derived) signals play a central role in the majority of acclimation responses.  相似文献   

17.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

18.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

19.
A. Kadota  M. Wada 《Protoplasma》1992,167(1-2):97-107
Summary Changes in the organization of cortical actin microfilaments during phytochrome-mediated and blue light-induced photoorientation of chloroplasts were investigated by rhodamine-phalloidin staining in protonemal cells of the fernAdiantum capillusveneris. Low- and high-fluence rate responses were induced by partial irradiation of individual cells with a microbeam of 20 m in width. In the low-fluence rate responses to red and blue light, a circular structure composed of microfilaments was induced on the chloroplast concentrated in the irradiated region, on the side facing the plasma membrane, as already reported in the case of the low-fluence rate response induced by polarized red or blue light. Such a structure was not observed on the chloroplasts located far from the microbeam. Time-course studies revealed that the structure was induced after the chloroplasts gathered in the illuminated region and that the structure disappeared before chloroplasts moved out of this region when the microbeam was turned off. In the high-fluence rate response to blue light, chloroplasts avoided the irradiated site but accumulated in the shaded area adjacent the edges of microbeam. The circular structure made of microfilaments was also observed on the chloroplasts gathered in the area and it showed the same behavior with respect to its appearance and disappearance during a light/dark regime as in the case of the low-fluence rate response. However, no such circular structure was observed in the high-fluence rate response to red light, in which case the chloroplasts also avoided the illuminated region but no accumulation in the adjacent areas was induced. These results indicate that the circular structure composed of microfilaments may play a role in the anchorage of the chloroplast during intracellular photo-orientation.  相似文献   

20.
We investigated the responses of stomata to light in the fern Adiantum capillus-veneris, a typical species of Leptosporangiopsida. Stomata in the intact leaves of the sporophytes opened in response to red light, but they did not open when blue light was superimposed on the red light. The results were confirmed in the isolated Adiantum epidermis. The red light-induced stomatal response was not affected by the mutation of phy3, a chimeric protein of phytochrome and phototropin in this fern. The lack of a blue light-specific stomatal response was observed in three other fern species of Leptosporangiopsida, i.e. Pteris cretica, Asplenium scolopendrium and Nephrolepis auriculata. Fusicoccin, an activator of the plasma membrane H(+)-ATPase, induced both stomatal opening and H(+) release in the Adiantum epidermis. Adiantum phototropin genes AcPHOT1 and AcPHOT2 were expressed in the fern guard cells. The transformation of an Arabidopsis phot1 phot2 double mutant, which lost blue light-specific stomatal opening, with AcPHOT1 restored the stomatal response to blue light. Taken together, these results suggest that ferns of Leptosporangiopsida lack a blue light-specific stomatal response, although the functional phototropin and plasma membrane H(+)-ATPase are present in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号