首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to analyze the effects of a polyunsaturated n-6 high-fat diet on rat DMBA-induced breast cancer at different stages of the carcinogenesis and to investigate if changes in the tumor fatty acid composition are one of the mechanisms by which dietary lipids could exert their effects. 14 fatty acids were evaluated in 6 lipid fractions. The results firstly showed that this high-fat diet stimulated the malignant mammary tumor growth, mainly all in the promotion group. The tumor lipid analysis indicated: 1) that each lipid fraction presented distinct major fatty acids (>5%) which were not the most abundant in the diet, except in the case of the triacylglicerides, suggesting the different resistance to dietary fatty acid modification of the tumor lipid fractions; 2) a higher arachidonic acid content in the fractions with less linoleic acid, above all in phospholipids, particularly in the phosphatidylethanolamine, indicating a different efficiency of conversion; 3) the three most abundant fatty acids in the dietary lipid (18:2n-6, 18:1n-9 and 16:0) were those which essentially displayed the differences between groups; thus, the high-fat diet changed the tumor lipid profile, increasing the 18:2n-6 relative content and decreasing that of the 18:1n-9; differences were significant in phosphatidylcholine, free fatty acids and triacylglycerides. Any change was obtained in the phosphatidylinositol. The greatest number of differences was found in the promotion group. Taken as a whole, our results suggest the different roles of lipid fractions in breast cancer cells and an association between cancer malignancy and the content of linoleic and oleic acids.  相似文献   

2.
Studies with animal models in vivo as well as with animal and human tumor cells in vitro suggest that specific fatty acids could reduce breast tumorigenesis. The most striking dietary fatty acid studies in animal models that show promise for reduction of breast cancer risk in humans are with conjugated linoleic acids (CLA) and n-3 fatty acids. Although a number of mechanisms have been proposed, the specific target of those fatty acids is not yet known. We sought to determine whether the effects of those fatty acids on terminally differentiated tumor cell seen could be due to alteration of breast cancer stem cells. The isomers, cis9, trans11-CLA and trans10, cis12-CLA, and the n-3 fatty acids, docosahexaenoic and eicosapentaenoic, reduced the proliferation of, and had increased toxicity towards, mammary tumor initiating cells. One mechanism involved in the effect of n-3 fatty acids may be due to alteration of the profile of prostaglandins. These results indicate that select fatty acids may be useful for preventing or reducing the risk of breast cancer as they may target the tumor initiating cell.  相似文献   

3.

Objective

The microenvironment of breast epithelial tissue may contribute to the clinical expression of breast cancer. Breast epithelial tissue, whether healthy or tumoral, is directly in contact with fat cells, which in turn could influence tumor multifocality. In this pilot study we investigated whether the fatty acid composition of breast adipose tissue differed according to breast cancer focality.

Methods

Twenty-three consecutive women presenting with non-metastatic breast cancer underwent breast-imaging procedures including Magnetic Resonance Imaging prior to treatment. Breast adipose tissue specimens were collected during breast surgery. We established a biochemical profile of adipose tissue fatty acids by gas chromatography. We assessed whether there were differences according to breast cancer focality.

Results

We found that decreased levels in breast adipose tissue of docosahexaenoic and eicosapentaenoic acids, the two main polyunsaturated n-3 fatty acids of marine origin, were associated with multifocality.

Discussion

These differences in lipid content may contribute to mechanisms through which peritumoral adipose tissue fuels breast cancer multifocality.  相似文献   

4.
Dietary fats and membrane function: implications for metabolism and disease   总被引:6,自引:0,他引:6  
Lipids play varied and critical roles in metabolism, with function dramatically modulated by the individual fatty acid moities in complex lipid entities. In particular, the fatty acid composition of membrane lipids greatly influences membrane function. Here we consider the role of dietary fatty acid profile on membrane composition and, in turn, its impact on prevalent disease clusters of the metabolic syndrome and mental illness. Applying the classical physiological conformer-regulator paradigm to quantify the influence of dietary fats on membrane lipid composition (i.e. where the membrane variable is plotted against the same variable in the environment--in this case dietary fats), membrane lipid composition appears as a predominantly regulated parameter. Membranes remain relatively constant in their saturated (SFA) and monounsaturated (MUFA) fatty acid levels over a wide range of dietary variation for these fatty acids. Membrane composition was found to be more responsive to n-6 and n-3 polyunsaturated fatty acid (PUFA) levels in the diet and most sensitive to n-3 PUFA and to the n-3/n-6 ratio. These differential responses are probably due to the fact that both n-6 and n-3 PUFA classes cannot be synthesised de novo by higher animals. Diet-induced modifications in membrane lipid composition are associated with changes in the rates of membrane-linked cellular processes that are major contributors to energy metabolism. For example, in the intrinsic activity of fundamental processes such as the Na+/K+ pump and proton pump-leak cycle. Equally, dietary lipid profile impacts substantially on diseases of the metabolic syndrome with evidence accruing for changes in metabolic rate and neuropeptide regulation (thus influencing both sides of the energy balance equation), in second messenger generation and in gene expression influencing a range of glucose and lipid handling pathways. Finally, there is a growing literature relating changes in dietary fatty acid profile to many aspects of mental health. The understanding of dietary lipid profile and its influence on membrane function in relation to metabolic dysregulation has exciting potential for the prevention and treatment of a range of prevalent disease states.  相似文献   

5.
Zinc (Zn) has been implicated in altered adipose metabolism, insulin resistance and obesity. The objective of this study was to investigate the effects dietary Zn deficiency and supplementation on adiposity, serum leptin and fatty acid composition of adipose triglycerides and phospholipid in C57BL/6J mice fed low-fat (LF) or high-fat (HF) diets for a 16 week period. Weanling C57BL/6J mice were fed LF (16% kcal from soybean oil) or HF (39% kcal from lard and 16% kcal from soybean oil) diets containing 3, 30 or 150 mg Zn/kg diet (ZD = Zn-deficient, ZC = Zn control and ZS = Zn-supplemented, respectively). HF-fed mice had higher fat pad weights and lower adipose Zn concentrations than the LF-fed mice. The ZD and ZS groups had a reduced content of fatty acids in adipose triglycerides compared to the ZC group, suggesting that zinc status may influence fatty acid accumulation in adipose tissue. Serum leptin concentration was positively correlated with body weight and body fat, and negatively correlated with adipose Zn concentration. Dietary fat, but not dietary Zn, altered the fatty acid composition of adipose tissue phospholipid and triglyceride despite differences in Zn status assessed by femur Zn concentrations. The fatty acid profile of adipose triglycerides generally reflected the diets. HF-fed mice had a higher percentage of C20:4 n-6, elevated ratio of n-6/n-3, lower ratio of PUFA/SAT and reduced percentage of total n-3 fatty acids in adipose phospholipid, a fatty acid profile associated with obesity-induced risks for insulin resistance and impaired glucose transport. In summary, the reduced adipose Zn concentrations in HF-fed mice and the negative correlation between serum leptin and adipose Zn concentrations support an interrelationship among obesity, leptin and Zn metabolism.  相似文献   

6.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

7.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

8.
The timing of dietary fat intake may modify breast cancer risk. In addition, n-3 fatty acids reduce, and n-6 fatty acids increase, the risk of breast cancer and a maternal high n-6 fat diet results in a greater risk of breast cancer in the female offspring. We hypothesized that the timing of n-3 fatty acid-enriched fish oil supplementation would be important for reducing the risk of breast cancer. Female rats were fed to a high n-6 fat diet containing 20% of the sunflower oil by weight during pregnancy and lactation, and the female offspring were exposed to fish oil by oral gavage either during the perinatal period via maternal intake or during puberty or adulthood. Exposure during the perinatal period to a maternal high n-6 fat diet with fish oil supplementation significantly reduced the incidence of carcinogen-induced mammary tumors in the female offspring compared to a maternal high n-6 fat diet with no fish oil supplementation or fish oil supplementation later in life (P=.0228 by Cox proportional hazards model). We found that a maternal high n-6 fat diet during pregnancy is more important in increasing the risk of mammary tumors in the female offspring than a maternal high n-6 fat diet during lactation. This study suggests that fish oil supplementation during the perinatal period decreases the effect of a maternal high n-6 fat diet on subsequent carcinogen-induced mammary tumor risk, whereas fish oil supplementation during puberty or adulthood does not.  相似文献   

9.
The fatty acid profile of hepatocytes and adipocytes is determined by the composition of the dietary lipids. It remains unclear which fatty acid components contribute to the development or reduction of insulin resistance. The present work examined the fatty acid composition of both tissues in sucrose-induced obese rats receiving fish oil to determine whether the effect of dietary (n-3) polyunsaturated fatty acids (PUFAs) on the reversion of metabolic syndrome in these rats is associated to changes in the fatty acid composition of hepatocyte and adipocyte membrane lipids. Animals with metabolic syndrome were divided into a corn–canola oil diet group and a fish oil diet group, and tissues fatty acids composition were analyzed after 6 weeks of dietary treatment. Fatty acid profiles of the total membrane lipids were modified by the fatty acid composition of the diets fed to rats. N-3 PUFAs levels in animals receiving the fish oil diet plus sucrose in drinking water were significantly higher than in animals under corn–canola oil diets. It is concluded that in sucrose-induced obese rats, consumption of dietary fish oil had beneficial effects on the metabolic syndrome and that such effects would be conditioned by the changes in the n-3 PUFAs composition in hepatic and adipose tissues because they alter membrane properties and modify the type of substrates available for the production of active lipid metabolites acting on insulin resistance and obesity.  相似文献   

10.
Time-restricted feeding (TRF) can reduce adiposity and lessen the co-morbidities of obesity. Mice consuming obesogenic high-fat (HF) diets develop insulin resistance and hepatic steatosis, but have elevated indices of long-chain polyunsaturated fatty acids (LCPUFA) that may be beneficial. While TRF impacts lipid metabolism, scant data exist regarding the impact of TRF upon lipidomic composition of tissues. We (1) tested the hypothesis that TRF of a HF diet elevates LCPUFA indices while preventing insulin resistance and hepatic steatosis and (2) determined the impact of TRF upon the lipidome in plasma, liver, and adipose tissue. For 12 weeks, male, adult mice were fed a control diet ad libitum, a HF diet ad libitum (HF-AL), or a HF diet with TRF, 12 hours during the dark phase (HF-TRF). HF-TRF prevented insulin resistance and hepatic steatosis resulting from by HF-AL treatment. TRF-blocked plasma increases in LCPUFA induced by HF-AL treatment but elevated concentrations of triacylglycerols and non-esterified saturated fatty acids. Analysis of the hepatic lipidome demonstrated that TRF did not elevate LCPUFA while reducing steatosis. However, TRF created (1) a separate hepatic lipid signature for triacylglycerols, phosphatidylcholine, and phosphatidylethanolamine species and (2) modified gene and protein expression consistent with reduced fatty acid synthesis and restoration of diurnal gene signaling. TRF increased the saturated fatty acid content in visceral adipose tissue. In summary, TRF of a HF diet alters the lipidomic profile of plasma, liver, and adipose tissue, creating a third distinct lipid metabolic state indicative of positive metabolic adaptations following HF intake.  相似文献   

11.
There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations.  相似文献   

12.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

13.
Four different luminal surfaces of rat urothelium differing in their fatty acid composition were prepared by dietary induction. In order to induce lipid changes, each of four groups of rat received a basal diet rich in one of the unsaturated n-3, n-6 or n-9 fatty acid families and a commercial (control) diet. The effects of the dietary regime on the fatty acid composition of luminal urothelial membranes and their relation to the mobility of fluorescent probes were studied. In comparison with the control diet membrane, all three fatty acid-rich diets induced a decrease of the percentage amount of saturated fatty acid while that of the unsaturated fatty acids was increased. Accordingly, all three diets increased the unsaturation index in comparison with the control diet. The anisotropy across each membrane fraction was assessed using the n-(9-anthroyloxy) fatty acid fluorescent probes 3-AS, 7-AS and 12-AS, which locate at different depths in the membrane. Two different anisotropy profiles were observed. One profile showed the highest anisotropy at the C7 depth, whereas the other exhibited a continuous decrease of the anisotropy from the surface to the center of the bilayer. The molecular properties (isomerization) of 18:2n-9 fatty acid may account, at least in part, for the observed V-shaped profile (the ascending trend) of the membrane anisotropy values as a function of the respective 18:2n-9 fatty acid contents. Nevertheless, the minimum value of the profile did not correspond to the minimum 18:2n-9 fatty acid content, but rather to the higher amount of docosahexaenoic (22:6n-3) fatty acid. Thus, a modulating role of the 22:6n-3 fatty acid on the rigidifying effect of 18:2n-9 fatty acid is suggested, possibly mediated by relationships between fatty acid composition, saturated and unsaturated chain lengths, and freedom of motion of the phospholipid acyl chains.  相似文献   

14.
The purpose of the present study was to investigate the relation between adipose tissue polyunsaturated fatty acids, an index of long-term or habitual fatty acid dietary intake and depression. The sample consisted of 150 elderly males from the island of Crete. The subjects were survivors of the Greek Seven Countries Study group. The mean age was 84 years. The number of subjects with complete data on all variables studied was 63. Subjects were examined by the Preventive Medicine and Nutrition Clinic of the University of Crete. Depression was assessed through the use of the short form of the Geriatric Depression Scale (GDS-15). Depression correlated negatively with adipose tissue alpha-linolenic acid (C18:3n-3). Depressed subjects had significantly reduced (-10.5%) adipose tissue C18:3n-3 levels than non-depressed subjects. The observed negative relation between adipose tissue C18:3n-3 and depression, in the present study, appears to indicate increasing long-term dietary C18:3n-3 intakes with decreasing depression. This agrees with findings of other studies indicating an inverse relation between depression and consumption of fish and n-3 polyunsaturated fatty acids. This is the first literature report of a relation between adipose tissue C18:3n-3 and depression. Furthermore, this is the first report of a relation between adipose PUFA and depression in an elderly sample. Depression has been reported to be associated with elevated cytokines, such as, IL-1, IL-2, IL-6, INF-gamma and INF-alpha. Fish oil and omega-3 fatty acids, on the other hand, have been reported to inhibit cytokine production. The observed negative relation between adipose C18:3n-3 and depression, therefore, may stem from the inhibiting effect of C18:3n-3 or its long-chain metabolites on cytokine synthesis.  相似文献   

15.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

16.
The aim of this work was to characterise the lipid and fatty acid composition of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) and to investigate their influence on the fatty acid profiles of the lipids of rat hepatocytes cultured in monolayers. Chylomicrons were prepared from the lymph collected from the thoracic duct of rats given an oral dose of fish or corn oil (high in n-3 and n-6 PUFA, respectively), and remnants were prepared in vitro from such chylomicrons using rat plasma containing lipoprotein lipase. The fatty acids predominating in the oils abounded also in their respective chylomicrons and remnants, especially in triacylglycerols. Chylomicrons as well as remnants contained small amounts of phospholipids and long-chain PUFA that were minor in, or absent from, the dietary oils, evidently provided by the intestinal epithelium. The incubation of hepatocytes for 6 h, with either n-3 or n-6 PUFA-rich remnants (0.25-0.75 mM triacylglycerol) resulted in a dose-dependent increase in the amount of triacylglycerols and phospholipids in the cells, which was not affected further by increasing the incubation time to 19 h. Whereas hepatocyte triacylglycerols mostly incorporated the PUFA predominating in each remnant type, the fatty acid profile of cell phospholipids was virtually unchanged. In addition, irrespective of whether they were enriched in n-3 or n-6 PUFA, remnants promoted a relative decrease in the amount of cholesteryl esters, a minor hepatocyte lipid class poor in PUFA. The results demonstrate that the hepatocyte fatty acid profile is modulated in a lipid-class specific way by the amount and type of dietary PUFA delivered to cells in chylomicron remnants.  相似文献   

17.
Epidemiological studies suggest that dietary polyunsaturated fatty acids (PUFA) may influence breast cancer progression and prognosis. In order to study potential mechanisms of action of fatty acid modulation of tumor growth, we studied, in vitro, the influence of n-3 and n-6 fatty acids on proliferation, cell cycle, differentiation and apoptosis of MCF-7 human breast cancer cells. Both eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) inhibited the MCF-7 cell growth by 30% and 54%, respectively, while linoleic acid (LA) had no effect and arachidonic acid (AA) inhibited the cell growth by 30% (p < 0.05). The addition of vitamin E (10uM) to cancer cells slightly restored cell growth. The incubation of MCF-7 cells with PUFAs did not alter the cell cycle parameters or induce cell apoptosis. However, the growth inhibitory effects of EPA, DHA and AA were associated with cell differentiation as indicated by positive Oil-Red-O staining of the cells. Lipid droplet accumulation was increased by 65%, 30% and 15% in the presence of DHA, EPA and AA, respectively; (p < 0.05). These observations suggest that fatty acids may influence cellular processes at a molecular level, capable of modulating breast cancer cell growth.  相似文献   

18.
Obesity consists in fat accumulation leading to increase in adipose cells number and size. Adipocyte membrane biophysical properties are critical to maintain cellular viability in metabolically healthy obesity. This study investigated the effect of the genetic background and dietary protein restriction on fat tissue lipid composition, adipocyte membrane fluidity and water permeability using the pig as experimental model. Twenty-four male pigs from distinct genotypes, lean and obese, were fed on normal and reduced protein diets within a 2 × 2 factorial arrangement (two genotypes and two diets). Backfat thickness was twofold higher in obese than in lean pigs but unrelated to dietary protein level. In contrast, total fatty acids in the subcutaneous adipose tissue were dependent on both breed and diet, with increased lipid content promoted by the fatty genotype and by the restriction of dietary protein. Adipose membranes isolated from obese pig's subcutaneous fat tissue showed higher permeability to water, in line with an increased fluidity. Moreover, the reduced content of dietary protein influenced positively the fluidity of adipose membranes. Neither genotype nor diet affected total cholesterol concentration in the adipose membranes. Membrane-saturated fatty acids' content was influenced by genotype, while membrane-polyunsaturated fatty acids, particularly from the n-6 family, was influenced by diet. The ratio of oleic (18:1c9)/linoleic (18:2n-6) acids was positively correlated with membrane fluidity. All together, these findings reinforce the genetic background as a determinant player on adipose membrane biophysical properties and point to the dietary protein level as an important factor for subcutaneous lipid deposition as well as for regulation of membrane function, factors that may have impact on human obesity and metabolic syndrome.  相似文献   

19.
The aim of this study was to determine the time-course incorporation of dietary n-3 polyunsaturated fatty acids into phospholipids of tissues highly involved in lipid and energy metabolism: the liver and the white (WAT) and brown (BAT) adipose tissues. Rats were fed a diet supplemented with 19% fish oil for up to 4 weeks. Minor changes in the relative proportions of tissue phospholipids were observed in the three tissues. Fish-oil feeding induced rapid and large replacements of n-6 fatty acids by n-3 fatty acids. In liver, the 22:6n-3 level increased progressively and reached a plateau after 3 (phosphatidylethanolamine and phosphatidylserine) or 7 days (phosphatidylcholine and phosphatidylinositol). In contrast, the 20:5n-3 level transiently peaked in all liver phospholipids at days 1–3 before reaching a plateau after day 7. In WAT as in BAT the level of n-3 fatty acids increased progressively and reached in all phospholipids a plateau after day 7. As a general trend, in each phospholipid class the 22:6n-3/20:5n-3 ratio was higher in liver than in the two adipose tissues. This study shows that each dietary n-3 fatty acid is incorporated very rapidly into liver, WAT, and BAT phospholipids but according to time courses and at levels that depend simultaneously on the tissue and phospholipid class considered.  相似文献   

20.
This study was designed to investigate the effect of myristic acid on the biosynthesis and metabolism of highly unsaturated fatty acids, when it is supplied in a narrow physiological range in the diet of the rat (0.2-1.2% of total dietary energy). Three experimental diets were designed, containing 22% of total dietary energy as lipids and increasing doses of myristic acid (0.71, 3.00 and 5.57% of total fatty acids). Saturated fat did not exceed 31% of total fat and the C18:3 n-3 amount in each diet was strictly equal (1.6% of total fatty acids). After 7 weeks, the diets had no effect on plasma cholesterol level but greatly modified the liver, plasma and adipose tissue saturated, monounsaturated and polyunsaturated fatty acid profiles. Firstly, daily intakes of myristic acid resulted in a dose-dependent tissue accumulation of myristic acid itself. Palmitic acid was significantly increased in the tissues of the rats fed the higher dose of myristic acid. A dose-response accumulation of tissue C16:1 n-7 as a function of dietary C14:0 was also shown. Secondly, a main finding was that, among n-3 and n-6 polyunsaturated fatty acids, a dose-response accumulation of liver and plasma C20:5 n-3 and C20:3 n-6 (two precursors of eicosanoids) as a function of dietary C14:0 was shown. This result suggests that dietary myristic acid may participate in the regulation of highly unsaturated fatty acid biosynthesis and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号