首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid state 13C NMR measurements of cork, before and after suberin removal, showed that aliphatic suberin is spatially separated from carbohydrate and lignin and experiences higher motional freedom. Two types of chain methylenes, differing in chemical shift and in dynamic properties, were identified in aliphatic suberin. Experimental evidence indicated that the more motionally hindered methylenes are those situated nearer the linkages of aliphatic suberin to the cell wall. These linkages were shown to involve –CH2O– groups, probably engaged in ester linkages to phenylpropane units and carbohydrate C6 carbons. Spectral intensity changes indicated that, during the first steps of alkaline desuberization, these linkages are broken and the shorter aliphatic suberin chains removed. Longer chains require hydrolysis of the ester linkages within the chains and are removed upon stronger alkaline treatment. T1(C), T1ρ(H) and T1ρ(C) relaxation times have shown that the removal of suberin from cork leads to a motionally restricted and more compact environment, on the megahertz and mid-kilohertz timescales. The properties of cork suberin showed that suberin organization in cork is distinct from that in potato tissue.  相似文献   

2.
The effect of hydration on the molecular dynamics of soft wheat gluten was investigated by solid state NMR. For this purpose, we recorded static and MAS 1H spectra and SPE, CP, and other selective 13C spectra under MAS and dipolar decoupling conditions on samples of dry and H2O and D2O hydrated gluten. Measurements of carbon-proton CP times and several relaxation times (proton T1, T and T2, and carbon T1) were also performed. The combination of these techniques allowed both site-specific and domain-averaged motional information to be obtained in different characteristic frequency ranges. Domains with different structural and dynamic behaviour were identified and the changes induced by hydration on the dynamics of different domains could be monitored. The proton spin diffusion process was exploited to get information on the degree of mixing among different gluten domains. The results are consistent with the “loop and train” model proposed for hydrated gluten.  相似文献   

3.
4.
13C and 1H NMR spectra of an ethanol insoluble material (EIM) prepared from the pericarp of mature-green (MG) and red-ripe (RR) tomato fruits were acquired in ‘liquid-like’ and cross-polarisation with dipolar decoupling and magic angle spinning (CPMAS) conditions using the same triple resonance probe. Such a strategy allowed acquisitions of various NMR experiments aimed at detecting compositional differences as well as distinguishing differences in molecular mobility for various constituent polysaccharides related with the two ripening stages. Increase of the proton dipolar decoupling power levels from 3 to 50–55 kHz during single pulse 13C acquisition, led to more intense signals for pectic and hemicellulosic polysaccharides. This behaviour was interpreted as reflecting motional restrictions of these polysaccharides inside the porous cell wall network. Measurements of the proton rotating frame relaxation times T in the ‘liquid-like’ conditions and of the proton transverse relaxation times T2 from CPMAS spectra, revealed changes in mobilities for some pectic polysaccharides in relation with ripening, particularly for the H1 and H5 protons of -1,5 arabinan (Ara) side chains of rhamnogalacturonans. These data are discussed in relation with known pectic modifications occurring during ripening and associated with the tomato fruit softening.  相似文献   

5.
This paper describes a 13C solid state NMR study of hydrated powders and gels of locust bean gum galactomannan-LBG and Konjac glucomannan-KGM. Changes in relative spectral intensities, cross-polarization dynamics (TCH, T1ρH) and relaxation times (T1C, T1H, T2H) show that hydration (0–90%) of LBG powders increases the 108 Hz frequency molecular motions, probably reflecting the enhanced motion of non-aggregating segments and chain ends. Slower motions (104–105 Hz) are enhanced only slightly at 90% hydration. LBG gel shows higher spatial distinction between aggregated and non-aggregated segments than the hydrated powder and relaxation times indicate higher mobility for galactose-ramified segments, compared to linear mannose segments. While the dynamics of KGM hydration is similar to that of LBG, i.e. mainly affecting fast 108 Hz motions, the gel is significantly more rigid. Both spectra and relaxation times show that glucose residues in KGM gel are particularly hindered, probably due to their preferential involvement in chain aggregation.  相似文献   

6.
The preparation of a novel mononuclear complex of zirconium having an η8-bonded pentalene ligand and two η3-allyl groups is described. Its structure has been determined by 1H and 13C NMR spectroscopy. At room temperature some of the NMR signals are broadened, revealing that the compound is structurally dynamic. It is shown that the compound has C2 symmetry with the enantiomeric forms undergoing racemisation.  相似文献   

7.
A 25.182-MHz 13C-n.m.r. spectrum of gum arabic allows unambiguous characterisation of all the C-1 resonances. These assignments have been confirmed by correlation of the modification of the intensities of these signals after controlled acid hydrolysis and characterisation of the released fragments. The resonances of the other carbons have been assigned through partial relaxed T1 spectra of the polysaccharides obtained by graded degradation of the gum. These results indicate gum arabic to consist mainly of a (1→3)-β- -galactan core with (1→6)-β- -galacto-pyranosyl branches and with - -arabinofuranosyl-(1→3)-- -arabinofuranosyl and - -rhamnopyranosyl-(1→4)-β- -glucopyranosyluronic acid groups attached to positions 3 and 6, respectively, of the branch units.  相似文献   

8.
NMR relaxation studies of intracellular Na in red blood cells   总被引:2,自引:0,他引:2  
The state of intracellular Na+ in human and dog erythrocytes was characterized by 23Na-NMR using dysprosium complexes as shift reagents. Intracellular Na+ concentrations were determined using integration of the inner Na+ NMR signals and measurements of the intracellular volume using 59Co-NMR of extracellular Co(CN)3−6. T2 was found to be significantly shorter than T1, indicating some binding to macromolecules. While the longitudinal magnetization decay follows a single exponential the transverse magnetization could be fitted with a double-exponential function. It was shown that neither the binding to the inner side of the membrane nor binding to hemoglobin contributes to the relaxation enhancement.  相似文献   

9.
Complete 1H and 13C resonance assignments were made for a new type of 3β,7β-dihydroxy-5-cholen-24-oic acid doubly conjugated with sulfuric acid at C-3 and N-acetylglucosamine at C-7 and its glycine- and taurine-amidated triple-conjugates by the combined use of several homonuclear and heteronuclear shift-correlated 2D NMR techniques. The effects of sulfation at C-3, N-acetylglucosaminidation at C-7, and aminoacyl amidation at C-24 on the 1H and 13C chemical shifts and signal multiplicity were clarified. The shielding data serving to characterize each of the bile acid multi-conjugates are also discussed.  相似文献   

10.
13C CP/MAS NMR spectroscopy has been shown to be a powerful tool to quantify the degree of acetylation of chitin and chitosan. In order to optimise the parameters which afford quantitative 13C cross-polarisation magic-angle spinning NMR spectra, a detailed relaxation study has been carried out on selected chitin and deacetylated chitin samples. A relaxation delay of 5 s and a contact time of 1 ms have been found to yield quantitative NMR spectra of samples with deacetylation degree values of 0.68 and 0.16. The measured spin-lattice relaxation times in the rotating frame, T1ρH, are in the range 6.4–8.9 ms for chitin and 4.3–7.3 ms for deacetylated chitin, while TCH values for both samples are very similar and range from 0.03 to 0.19 ms. Spin-counting experiments indicate that, within experimental error, all carbon is detected by NMR indicating that the samples studied contain no (or very few) paramagnetic centres.  相似文献   

11.
Keith A. Rose  Alan Bearden 《BBA》1980,593(2):342-352
Electron paramagnetic resonance (EPR) power saturation and saturation recovery methods have been used to determine the spin lattice, T1, and spin-spin, T2, relaxation times of P-700+ reaction-center chlorophyll in Photosystem I of plant chloroplasts for 10 K T 100 K. T1 was 200 μs at 100 K and increased to 900 μs at 10 K. T2 was 40 ns at 40 K and increased to 100 ns at 10 K. T1 for 40 K T 100 K is inversely proportional to temperature, which is evidence of a direct-lattice relaxation process. At T = 20 K, T1 deviates from the 1/T dependence, indicating a cross relaxation process with an unidentified paramagnetic species. The individual effects of ascorbate and ferricyanide on T1 of P-700+ were examined: T1 of P-700+ was not affected by adding 10 mM ascorbate to digitonin-treated chloroplast fragments (D144 fragments). The P-700+ relaxation time in broken chloroplasts treated with 10 mM ferricyanide was 4-times shorter than in the untreated control at 40 K. Ferricyanide appears to be relaxing the P-700+ indirectly to the lattice by a cross-relaxation process. The possibility of dipolar-spin broadening of P-700+ due to either the iron-sulfur center A or plastocyanin was examined by determining the spin-packet linewidth for P-700+ when center A and plastocyanin were in either the reduced or oxidized states. Neither reduced center A nor oxidized plastocyanin was capable of broadening the spin-packet linewidth of the P-700+ signal. The absence of diplolar broadening indicates that both center A and plastocyanin are located at a distance at least 3.0 nm from the P-700+ reaction center chlorophyll. This evidence supports previous hypotheses that the electron donor and acceptor to P-700 are situated on opposite sides of the chloroplast membrane. It is also shown that the ratio of photo-oxidized P-700 to photoreduced centers A and B at low temperature is 2 : 1 if P-700 is monitored at a nonsaturating microwave power.  相似文献   

12.
Deuterium magnetic resonance (2H-NMR) and Raman spectroscopy are used to investigate order and fluidity at the terminal methyl position in 16-d3, 16′-d3 dipalmitoylphosphatidylcholine (16-d6 DPPC) multibilayers. These methods reveal substantial motion and disorder in the gel phase, 5–10°C below the gel-liquid crystal phase transition temperature (Tm). The phase transition is sensed in the 2H-NMR spectrum as a reduction in the quadrupole splitting from 14 kHz to 3 kHz. In contrast, the Raman parameter used to characterize the CD3 vibrations is quite insensitive to the melting process, although an analogous parameter does sense disordering at Tm at the 10 and 10′ position in 10-d2, 10′-d2 DPPC. The difference in the response of the NMR and Raman parameters may arise because the vibrational spectrum of the CD3 group is inhomogenously broadened and is therefore quite sensitive to alterations in the local environment around the methyl group. In contrast, the NMR quadrupole splitting is sensitive to both local motion of the methyl group and, near Tm, to motions of the CD2 group induced by transgauche isomerizations further up the chain. The difficulties that arise when results from different spectroscopic techniques are compared are demonstrated.  相似文献   

13.
A detailed analysis is presented of the nuclear (1H and 13C) magnetic resonance (n.m.r.) properties of sucrose, using both D2O and dimethyl sulfoxide-d6 as solvents, based on measurements of coupling constants, chemical shifts, T1 relaxation times, and nuclear Overhauser enhancements. Molecular modelling (HSEA calculations) suggests a strong conformational preference about the glycosidic linkages that is near to that for sucrose in the crystalline state, and this conformational rigidity is fully supported by the n.m.r. data, in terms of lack of influence of changes in concentration and temperature on the relevant n.m.r. parameters. The restricted rotation for the 1-hydroxymethyl group of the fructose residue is related to the persistence of the intramolecular hydrogen-bond between O-1f and O-2g. The presence of this bond was established for solutions in (CD3)2SO by the observation of isotopic chemicashifts on partial deuteration of the hydroxyl groups. The orientation of the 6-hydroxyl methyl group of the fructose residue is not that present in the crystalline state but, in (CD3)2SO, it may be intramolecularly hydrogen-bonded, as was demonstrated by titration of the hydroxyl groups with CD3OD. Observations are made regarding hydrophobic topographies common to sucrose, saccharin, and 1-chloro-1-deoxysucrose, which may have a bearing on sweetness.  相似文献   

14.
The full assignments of the 1H and 13C NMR signals of steroids bearing the 16β,23:23,26-diepoxy side chain are provided. Differentiation of the diasterotopic H-26 pair was achieved with the aid of NOESY experiments. The main substituent and steric effects associated with this moiety and their influence on the chemical shifts of the neighboring atoms are discussed.  相似文献   

15.
Biosynthesis of branched glucan by Pestalotiopsis from media containing D-(1-13C)glucose, D-(2-13C)glucose, D-(4-13C)glucose, D-(6-13C)glucose or a mixture of D-(1-13C)glucose and D-(2-13C)glucose was carried out to elucidate biosynthetic mechanism of branched polysaccharides. 13C NMR spectra of the labeled polysaccharides were determined and assigned. Analysis of 13C NMR spectra of glucitol acetates obtained from hydrolysates of the labeled branched polysaccharides indicated that transfer of labeling from C-1 to C-3 and C-6 carbons, from C-2 to C-1, C-3 and C-5 carbons, and from C-6 to C-1 carbon. From the results the percentages of routes via which the polysaccharide is biosynthesized are estimated. They show that the biosynthesis of the polysaccharide via the Embden-Meyerhof pathway and that from lipids and proteins are more active, and the pentose cycle is less active, than in the biosynthesis of cellulose and curdlan. As for the results, labeling at C-6 carbon in the branched polysaccharide cultured from D-(6-13C)glucose was low, compared to that of cellulose and curdlan.  相似文献   

16.
鼎湖山森林演替序列植物-土壤碳氮同位素特征   总被引:1,自引:0,他引:1       下载免费PDF全文
植物群落对水分利用和养分利用的优化策略, 土壤碳周转和氮循环过程对演替变化如何响应, 森林土壤有机碳积累机制等都是森林生态学需要解决的关键问题。然而, 这些生态学过程的变化在短时间内通过传统的研究手段难以被精确观测, 碳氮同位素(13C、15N)技术的应用或许能提供更多有价值的信息。该文通过对鼎湖山森林演替序列代表性群落——马尾松(Pinus massoniana)针叶林(PF)、针阔叶混交林(MF)和季风常绿阔叶林(BF)植物-土壤碳氮同位素自然丰度的测定, 分析了叶片稳定碳同位素比率(δ13C)和稳定氮同位素比率(δ15N)与其叶片元素含量的关系, 以及叶片-凋落物-土壤δ13C、δ15N在演替水平和垂直方向上的变化特征。结果显示: 1)主要优势树种叶片δ13C与其C:N极显著正相关(p < 0.01), 凋落物和各层土壤δ13C均表现为PF > MF > BF, 沿演替方向逐渐降低; 2)叶片δ15N与叶片N含量正相关(p = 0.05), 凋落物和表层土壤(0-10 cm) δ15N沿演替方向逐渐增大; 3)不同演替阶段土壤δ13C、δ15N均沿垂直剖面呈现增大的趋势。结果表明: 南亚热带地区植物群落的发展并不一定受水分利用和氮素利用的补偿制约; δ13C自然丰度法的应用有助于森林土壤有机碳积累机制, 尤其有助于成熟森林土壤“碳汇”机制的阐释; 植物-土壤δ15N值可作为评估土壤氮素有效性和生态系统“氮饱和”状态的潜在指标。  相似文献   

17.
《植物生态学报》2016,40(6):533
Aims The optimal patterns of plant community for water use and nutrient utilization, the responses of soil carbon and nitrogen turnover processes to forest succession, and the mechanisms of soil organic carbon accumulation, are three critical issues in forest ecosystem study. It is difficult to accurately detect these ecological processes with conventional methodologies in the short term, yet the application of 13C and 15N natural abundance technique may yield important information about these processes.Methods This study was conducted in Dinghushan Biosphere Reserve. We investigated the natural isotopic abundance of both 13C and 15N of plant-soil continuum along a successional gradient from Pinus massoniana forest (PF) to coniferous and broad-leaved mixed forest (MF), and monsoon evergreen broad-leaved forest (BF). We also analyzed the correlations of foliar stable carbon isotope ratio (δ13C) and stable nitrogen isotope ratio (δ15N) with foliar elemental contents and the variations of soil δ13C and δ15N along soil profiles at different successional stages.Important findings A significant positive correlation between foliar δ13C and foliar C:N was observed. In both litter and soil, the δ13C values tended to decrease along the forest succession, with the order as PF > MF > BF. Foliar δ15N was positively correlated with foliar N content. The δ15N values of litter and upper soil (0-10 cm) increased with successional status. Both soil δ13C and δ15N values increased with increasing soil depth at all three forests. Our results imply that 1) trade-off between water use efficiency and nitrogen use efficiency did not necessarily exist in subtropical forests of China; 2) the application of isotopic technique could assist understanding of the mechanisms of soil carbon accumulation in subtropical forests, especially in old-grow forests; 3) the 15N natural abundance of plant-soil continuum could be a potential indicator of soil nitrogen availability and ecosystem nitrogen saturation status.  相似文献   

18.
Assessing petroleum biodegradation rates is an important part of predicting natural attenuation in subsurface sediments. Monitoring carbon dioxide (CO2) and methane (CH4) produced in situ, and their radiocarbon 14C), stable carbon (13C) and deuterium (D). signature provide a novel method to assess anaerobic microbial processes. Our objectives were to: (1) estimate the rate of anaerobic petroleum hydrocarbon (PH) mineralization by monitoring the production of soil gas CH4 and CO2 in the vadose zone of low-permeability sediment, (2) evaluate the dominant microbial processes using δ13C and δD, and (3) determine the proportion of CH4 and CO2 attributable to anaerobic mineralization of PH using 14C analysis. Argon was sparged into the subsurface to dilute existing CO2 and CH4 concentrations. Vadose zone CO2, CH4, oxygen, total combustible hydrocarbons, and argon concentrations were measured for 75 days. CO2 and CH4 samples were collected on day 86 and analyzed for 14C, δ13C, and δD. Based on CH4 soil gas production, the anaerobic biodegradation rate was estimated between 0.017 to 0.055 mg/kg soil-d. CH4 14C (2.6 pMC), δ13C (-45.64‰), and δD (-316‰) values indicated that fermentation of PH was the sale source of CH4 in the vadose zone. CO2 14C (62 pMC) indicated that approximately 47% of the total CO2 was from PH mineralization and 53% from plant root respiration. Although low-permeability sediment increases the difficulty of completely replacing in situ soil gas and assuring anaerobic conditions, this novel respiration method distinguished between anaerobic processes responsible for PH degradation.  相似文献   

19.
R M Santos  E Rojas 《FEBS letters》1987,220(2):342-346
The effects of forskolin on electrical coupling among pancreatic β-cells were studied. Two microelectrodes were used to measure membrane potentials simultaneously in pairs of islet β-cells. Intracellular injection of a current pulse (ΔI) elicited a membrane response ΔV1 in the injected cell and also a response ΔV2 in a nearby β-cell confirming the existence of cell-to-cell electrical coupling among islet β-cells. In the presence of glucose (7 mM), application of forskolin evoked a transient depolarization of the membrane and electrical activity suggesting that the drug induced a partial inhibition of the β-cell membrane K+ conductance. Concomitant with this depolarization of the membrane there was a marked decrease in β-cell input resistance (ΔV2/ΔI) suggesting that exposure to forskolin enhanced intercellular coupling. Direct measurements of the coupling ratio ΔV2/ΔV1 provided further support to the idea that forskolin enhances electrical coupling among islet cells. Indeed, application of forskolin reversibly increased the coupling ratio. These results suggest that cAMP might be involved in the modulation of electrical coupling among islet β-cells.  相似文献   

20.
Palmitic and lauric acid complexes with amylose were studied by solid state methods: 13C CP/MAS NMR, deuterium NMR, X-ray powder diffraction and differential scanning calorimetry (DSC). The crystalline amylose complexes were found to be in a V-type sixfold single chain helix. The melting points of the complexes were over 100°C, at least 40–50°C higher than the melting points of the free fatty acids. CP/MAS 13C NMR spectra revealed two resonance peaks at 33.6 and 32.4 ppm for the palmitic acid, which were assigned as free and complexed fatty acid, respectively. A single resonance peak at 32.4 ppm was found for the lauric acid and assigned to the complex. The chemical shift of 32.4 ppm for the complexed fatty acids suggests a combined trans and gauche conformation for the fatty acid chain in the complex. T1 relaxation measurements on the two palmitic acid resonances show different behavior: a very slow relaxation for the 33.6 ppm and a much faster relaxation (1.2 s) for the 32.4 ppm resonances. The latter was similar to the relaxation of the single resonance of the lauric acid (1.1 s). Temperature dependent deuterium spectra of the amylose–lauric acid and amylose–palmitic acid complexes suggest a complete complexation for the amylose–lauric acid, whereas the amylose–palmitic acid complex is partially disassociated by the thermal treatment. Based on the overall data, a partially disordered model is proposed: an imperfect helix with the fatty acid partly inside and partly out, depending on crystallization conditions and the necessity of placing the carboxyl head outside the V-helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号