首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blue light induces carotenogenesis in Myxococcus xanthus. The carB operon encodes all but one of the structural genes involved, and its expression is regulated by the CarA-CarS repressor-antirepressor pair. In the dark, CarA-operator binding represses carB. CarS, produced on illumination, interacts physically with CarA to dismantle the CarA-operator complex and activate carB. Both operator and CarS bind to the autonomously folded N-terminal domain of CarA, CarA(Nter), which in excess represses carB. Here, we report the NMR structure of CarA(Nter), and map residues that interact with operator and CarS by NMR chemical shift perturbations, and in vivo and in vitro analyses of site-directed mutants. We show CarA(Nter) adopts the winged-helix topology of MerR-family DNA-binding domains, and conserves the majority of the helix-turn-helix and wing contacts with DNA. Tellingly, helix alpha2 in CarA, a key element in operator DNA recognition, is also critical for interaction with CarS, implying that the CarA-CarS protein-protein and the CarA-operator protein-DNA interfaces overlap. Thus, binding of CarA to operator and to antirepressor are mutually exclusive, and CarA may discern structural features in the acidic CarS protein that resemble operator DNA. Repressor inactivation by occluding the DNA-binding region may be a recurrent mechanism of action for acidic antirepressors.  相似文献   

2.
3.
4.
5.
6.
In the bacterium Myxococcus xanthus, carotenoids are produced in response to illumination, as a result of expression of the crt carotenoid biosynthesis genes. The majority of crt genes are clustered in the crtEBDC operon, which is repressed in the dark by CarA. Genetic data suggest that, in the light, CarS is synthesized and achieves activation of the crtEBDC operon by removing the repressive action of CarA. As CarS contains no known DNA-binding motif, the relief of CarA-mediated repression was postulated to result from a direct interaction between these two proteins. Use of the yeast two-hybrid system demonstrated direct interaction between CarA and CarS. The two-hybrid system also implied that CarA and, possibly, CarS are capable of homodimerization. Direct evidence for CarS anti-repressor action was provided in vitro. A glutathione S-transferase (GST)-CarA protein fusion was shown to bind specifically to a palindromic operator sequence within the crtEBDC promoter. CarA was prevented from binding to its operator, and prebound CarA was removed by the addition of purified CarS. CarS is therefore an anti-repressor.  相似文献   

7.
The CarS antirepressor activates a photo-inducible promoter in Myxococcus xanthus by physically interacting with the CarA repressor and eliminating the latter’s binding to operator DNA. Interestingly, interactions with both CarS and operator are crucially dependent on the DNA recognition helix of the CarA winged-helix DNA-binding domain. The CarA–CarS and the CarA-operator interfaces therefore overlap, and CarS may have structural features that mimic operator DNA. CarS has no known sequence homologues and its Gly and Pro contents are unusually high. Here, we report 1H, 13C and 15N backbone and side chain assignments of CarS1, an 86-residue truncated yet fully functional variant of CarS. Secondary structural elements inferred from these data differ from those predicted from sequence.  相似文献   

8.
9.
10.
11.
12.
13.
Mutants (car) isolated from Salmonella typhimurium were unable to utilize or ferment the following carbohydrates (all d-configuration): glucose, fructose, mannose, N-acetylglucosamine, sorbitol, mannitol, maltose, melibiose, and glycerol. The mutants did utilize galactose, glucose 6-phosphate, gluconic acid, glucuronic acid, pyruvate, and l-lactate. Biochemical analysis showed that there were two classes of mutants, each lacking one component of a phosphotransferase system. CarA mutants were deficient in enzyme I; carB lacked the phosphate carrier protein, HPr. Mapping experiments showed that the carA gene was located near pro; the carB gene mapped near purC.  相似文献   

14.
15.
16.
Carbapenam synthetase (CarA) is an ATP/Mg2+-dependent enzyme that catalyzes formation of the beta-lactam ring in (5R)-carbapenem-3-carboxylic acid biosynthesis. CarA is homologous to beta-lactam synthetase (beta-LS), which is involved in clavulanic acid biosynthesis. The catalytic cycles of CarA and beta-LS mediate substrate adenylation followed by beta-lactamization via a tetrahedral intermediate or transition state. Another member of this family of ATP/Mg2+-dependent enzymes, asparagine synthetase (AS-B), catalyzes intermolecular, rather than intramolecular, amide bond formation in asparagine biosynthesis. The crystal structures of apo-CarA and CarA complexed with the substrate (2S,5S)-5-carboxymethylproline (CMPr), ATP analog alpha,beta-methyleneadenosine 5'-triphosphate (AMP-CPP), and a single Mg2+ ion have been determined. CarA forms a tetramer. Each monomer resembles beta-LS and AS-B in overall fold, but key differences are observed. The N-terminal domain lacks the glutaminase active site found in AS-B, and an extended loop region not observed in beta-LS or AS-B is present. Comparison of the C-terminal synthetase active site to that in beta-LS reveals that the ATP binding site is highly conserved. By contrast, variations in the substrate binding pocket reflect the different substrates of the two enzymes. The Mg2+ coordination is also different. Several key residues in the active site are conserved between CarA and beta-LS, supporting proposed roles in beta-lactam formation. These data provide further insight into the structures of this class of enzymes and suggest that CarA might be a versatile target for protein engineering experiments aimed at developing improved production methods and new carbapenem antibiotics.  相似文献   

17.
Gerratana B  Stapon A  Townsend CA 《Biochemistry》2003,42(25):7836-7847
The Erwinia carotorova carA, carB, and carC gene products are essential for the biosynthesis of (5R)-carbapen-2-em-3-carboxylic acid, the simplest carbapenem beta-lactam antibiotic. CarA (hereafter named carbapenam synthetase) has been proposed to catalyze formation of (3S,5S)-carbapenam-3-carboxylic acid from (2S,5S)-5-carboxymethyl proline based on characterization of the products of fermentation experiments in Escherichia coli cells transformed with pET24a/carB and pET24a/carAB, and on sequence homology to beta-lactam synthetase, an enzyme that catalyzes formation of a monocyclic beta-lactam ring with concomitant ATP hydrolysis. In this study, we have purified recombinant carbapenam synthetase and shown in vitro that it catalyzes the ATP-dependent formation of (3S,5S)-carbapenam-3-carboxylic acid from (2S,5S)-5-carboxymethyl proline. The kinetic mechanism is Bi-Ter where ATP is the first substrate to bind followed by (2S,5S)-5-carboxymethyl proline and PPi is the last product released based on initial velocity, product and dead-end inhibition studies. The reactions catalyzed by carbapenam synthetase with different diastereomers of the natural substrate and with alternate alpha-amino diacid substrates were studied by HPLC, ESI mass spectrometry, and steady-state kinetic analysis. On the basis of these results, we have proposed a role for each moiety of (2S,5S)-5-carboxymethyl proline for binding to the active site of carbapenam synthetase. Coupled enzyme assays of AMP and pyrophosphate release in the reactions catalyzed by carbapenam synthetase with adipic and glutaric acid, which lack the alpha-amino group, in the presence and absence of hydroxylamine support the formation of an acyladenylate intermediate in the catalytic cycle.  相似文献   

18.
Escherichia coli lac repressor is a tetrameric protein composed of 360 amino acid subunits. Considerable attention has focused on its N-terminal region which is isolated by cleavage with proteases yielding N-terminal fragments of 51 to 59 amino acid residues. Because these short peptide fragments bind operator DNA, they have been extensively examined in nuclear magnetic resonance structural studies. Longer N-terminal peptide fragments that bind DNA cannot be obtained enzymatically. To extend structural studies and simultaneously verify proper folding in vivo, the DNA sequence encoding longer N-terminal fragments were cloned into a vector system with the coliphage T7 RNA polymerase/promoter. In addition to the wild-type lacI gene sequence, single amino acid substitutions were generated at positions 3 (Pro3----Tyr) and 61 (Ser61----Leu) as well as the double substitution in a 64 amino acid N-terminal fragment. These mutations were chosen because they increase the DNA binding affinity of the intact lac repressor by a factor of 10(2) to 10(4). The expression of these lac repressor fragments in the cell was verified by radioimmunoassays. Both wild-type and mutant lac repressor N termini bound operator DNA as judged by reduced beta-galactosidase synthesis and methylation protection in vivo. These observations also resolve a contradiction in the literature as to the location of the operator-specific, inducer-dependent DNA binding domain.  相似文献   

19.
20.
The LexA repressor from Escherichia coli is a sequence-specific DNA binding protein that shows no pronounced sequence homology with any of the known structural motifs involved in DNA binding. Since little is known about how this protein interacts with DNA, we have selected and characterized a great number of intragenic, second-site mutations which restored at least partially the activity of LexA mutant repressors deficient in DNA binding. In 47 cases, the suppressor effect of these mutations was due to an Ind- phenotype leading presumably to a stabilization of the mutant protein. With one exception, these second-site mutations are all found in a small cluster (amino acid residues 80 to 85) including the LexA cleavage site between amino acid residues 84 and 85 and include both already known Ind- mutations as well as new variants like GN80, GS80, VL82 and AV84. The remaining 26 independently isolated second-site suppressor mutations all mapped within the amino-terminal DNA binding domain of LexA, at positions 22 (situated in the turn between helix 1 and helix 2) and positions 57, 59, 62, 71 and 73. These latter amino acid residues are all found beyond helix 3, in a region where we have previously identified a cluster of LexA (Def) mutant repressors. In several cases the parental LexA (Def) mutation has been removed by subcloning or site-directed mutagenesis. With one exception, these LexA variants show tighter in vivo repression than the LexA wild-type repressor. The most strongly improved variant (LexA EK71, i.e. Glu71----Lys) that shows an about threefold increased repression rate in vivo, was purified and its binding to a short consensus operator DNA fragment studied using a modified nitrocellulose filter binding assay. As expected from the in vivo data, LexA EK71 interacts more tightly with both operator and (more dramatically) with non-operator DNA. A determination of the equilibrium association constants of LexA EK71 and LexA wild-type as a function of monovalent salt concentration suggests that LexA EK71 might form an additional ionic interaction with operator DNA as compared to the LexA wild-type repressor. A comparison of the binding of LexA to a non-operator DNA fragment further shows that LexA interacts with the consensus operator very selectively with a specificity factor of Ks/Kns of 1.4 x 10(6) under near-physiological salt conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号