共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In the first part of the paper, evidence has been presented that electrochromic styryl dyes, such as RH 421, incorporate into Na, K-ATPase membranes isolated from mammalian kidney and respond to changes of local electric field strength. In this second part of the paper, fluorescence studies with RH-421-labeled membranes are described, which were carried out to obtain information on the nature of charge-translocating reaction steps in the pumping cycle. Experiments with normal and chymotrypsin-modified membranes show that phosphorylation by ATP and occlusion of Na+ are electroneutral steps, and that release of Na+ from the occluded state to the extracellular side is associated with translocation of charge. Fluorescence signals observed in the presence of K+ indicate that binding and occlusion of K+ at the extracellular face of the pump is another major electrogenic reaction step. The finding that the fluorescence signals are insensitive to changes of ionic strength leads to the conclusion that the binding pocket accommodating Na+ or K+ is buried in the membrane dielectric. This corresponds to the notion that the binding sites are connected with the extracellular medium by a narrow access channel (ion well). This notion is further supported by experiments with lipophilic ions, such as tetraphenylphosphonium (TPP+) or tetraphenylborate (TPB–), which are known to bind to lipid bilayers and to change the electrostatic potential inside the membrane. Addition of TPP+ leads to a decrease of binding affinity for Na+ and K+, which is thought to result from the TPP–-induced change of electric field strength in the access channel.Deceased (September 13, 1990). 相似文献
2.
Summary Regulation of Na,K-ATPase mRNA isoform and mRNA expression by thyroid hormone (T3) in neonatal rat myocardium was examined. In euthyroid neonates between ages of 2 and 5 days, mRNA1, mRNA3, and mRNA1 abundances were nearly constant while mRNA2 was undetectable. During the interval between postnatal days 5 and 15, mRNA3 decreased to negligible levels and mRNA2 became expressed and increased in abundance to account for 20% of the mRNA pool by the 15th postnatal day. To examine the effect of T3 on this developmental program, neonates were injected with 75 g T3/100 g body weight or diluent alone on the second and third postnatal days and myocardial Na,K-ATPase subunit-mRNA abundances were determined on the third and fourth postnatal days. Because T3 treatment increased the RNA/DNA ratios of myocardial tissue, the subunit-mRNA abundances were normalized per unit DNA. Following 24 and 48 hr of T3 treatment, the abundances of mRNA1, mRNA3, and mRNA1 increased, while mRNA2 continued to remain undetectable during the 2-day interval between the second to fourth postnatal days. It is concluded that T3 augments the abundance of Na,K-ATPase subunit mRNAs that are already being expressed in the neonatal rat myocardium. The results further suggest that T3 does not act as a molecular switch in the developmental expression of the mRNA isoforms in rat myocardium during the first four postnatal days. 相似文献
3.
A dual-wavelength fluorimeter was constructed, which used two light emitting diodes (LEDs) to excite the fluorescence dye RH 421 alternately with two different wavelengths. The ratio of the emissions at the two excitation wavelengths provided a drift-insensitive signal, which allowed detection of very small changes of the fluorescence intensity. Those small changes were induced by ion binding and release in conformation E1 of the Na,K-ATPase. Titration experiments were performed to determine equilibrium dissociation constants (± standard deviation) for each step in the complete binding and release sequence: 0.12 ± 0.01 mM (E2(K2) KE1), 0.08 ± 0.01 mM (KE1 E1), 3.0 ± 0.2 mM (NaE1 E1), 5.2 ± 0.4 mM (Na2E1 NaE1) and 6.5 ± 0.4 mM (Na3E1 Na2E1) at pH 7.2 and T=16°C. These numbers show that the affinities of the binding sites exposed to the cytoplasm, are higher for K+ than for Na+ ions, similar to what was found on the extracellular side. The physiological requirement for extrusion of Na+ from the cytoplasm, and for import of K+ from the extracellular medium seems to be facilitated not by favorable binding affinities in state E1 but by the two ATP-driven reaction steps of the cycle, E2(K2) + ATP K2E1 · ATP and Na3E1 · ATP (Na3) El-P, which border the ion exchange reactions at the binding sites in conformation E1.
Correspondence to: H.-J. Apell 相似文献
4.
Summary Nonstationary pump currents which have been observed in K+-free Na+ media after activation of the Na,K-ATPase by an ATP-concentration jump (see the preceding paper) are analyzed on the basis of microscopic reaction models. It is shown that the behavior of the current signal at short times is governed by electrically silent reactions preceding phosphorylation of the protein; accordingly, the main information on charge-translocating processes is contained in the declining phase of the pump current. The experimental results support the Albers-Post reaction scheme of the Na,K-pump, in which the translocation of Na+ precedes translocation of K+. The transient pump current is represented as the sum of contributions of the individual transitions in the reaction cycle. Each term in the sum is the product of a net transition rate times a dielectric coefficient describing the amount of charge translocated in a given reaction step. Charge translocation may result from the motion of ion-binding sites in the course of conformational changes, as well as from movement of ions in access channels connecting the binding sites to the aqueous media. A likely interpretation of the observed nonstationary currents consists in the assumption that the principal electrogenic step is the E1-P/P-E2 conformational transition of the protein, followed by a release of Na+ to the extracellular side. This conclusion is supported by kinetic data from the literature, as well as on the finding that chymotrypsin treatment which is known to block the E1-P/P-E2 transition abolishes the current transient. By numerical simulation of the Albers-Post reaction cycle, the proposed mechanism of charge translocation has been shown to reproduce the experimentally observed time behavior of pump currents. 相似文献
5.
Summary Membrane fragments containing a high density of Na, K-ATPase can be noncovalently labeled with amphiphilic styryl dyes (e.g., RH 421). Phosphorylation of the Na,K-ATPase by ATP in the presence of Na+ and in the absence of K+ leads to a large increase of the fluorescence of RH 421 (up to 100%). In this paper evidence is presented that the styryl dye mainly responds to changes of the electric field strength in the membrane, resulting from charge movements during the pumping cycle: (i) The spectral characteristic of the ATP-induced dye response essentially agrees with the predictions for an electrochromic shift of the absorption peak. (ii) Adsorption of lipophilic anions to Na, K-ATPase membranes leads to an increase, adsorption of lipophilic cations to the decrease of dye fluorescence. These ions are known to bind to the hydrophobic interior of the membrane and to change the electric field strength in the boundary layer close to the interface. (iii) The fluorescence change that is normally observed upon phosphorylation by ATP is abolished at high concentrations of lipophilic ions. Lipophilic ions are thought to redistribute between the adsorption sites and water and to neutralize in this way the change of field strength caused by ion translocation in the pump protein. (iv) Changes of the fluorescence of RH 421 correlate with known electrogenic transitions in the pumping cycle, whereas transitions that are known to be electrically silent do not lead to fluorescence changes. The information obtained from experiments with amphiphilic styryl dyes is complementary to the results of electrophysiological investigations in which pump currents are measured as a function of transmembrane voltage. In particular, electrochromic dyes can be used for studying electrogenic processes in microsomal membrane preparations which are not amenable to electrophysiological techniques.Deceased (September 13, 1990). 相似文献
6.
7.
8.
The effect of taurine on rat and hamster brain Na,K-ATPase was examined and compared to norepinephrine (NE) stimulation of the enzyme. Although NE stimulation of microsomal Na,K-ATPase was observed in the presence of the cell cytosolic fraction, taurine was without effect in the presence and absence of this fraction. Taurine also failed to modulate pubescent and mature hamster brain Na,K-ATPase. Presence or absence of ion chelators did not change taurine's effect. These results are discussed in relation to previous reports of taurine and catecholamine stimulation of Na,K-ATPase. 相似文献
9.
Haque MM Manzoor N Amin M Hussain ME Khan LA 《Acta biochimica et biophysica Sinica》2007,39(8):583-590
The effect of glucose and 2-deoxy-D-glucose on pre-steady state kinetics of ATP hydrolysis by Na,K-ATPase has been investigated by following pH transients in a stopped-flow spectrophotometer. A typical pre-steady state signal showed an initial decrease then subsequent increase in acidity. Under optimal Na^+ (120 mM) and K^+ (30 mM) concentrations, magnitudes of both H^+ release and H^+ absorption were found to be approximately 1.0/ATPase molecule. The presence of 1 mM glucose significantly decreased H^+ absorption at high Na^+ concentrations, whereas it was ineffective at low Na^+. H^+ release was decreased significantly in the presence of 1 mM glucose at Na^+ concentrations ranging from 30 mM to 120 mM. Similar to the control, K^+ did not show any effect on either H^+ release or H^+ absorption at all tested combinations of Na^+ and K^+ concentrations. Pre-steady state H^+ signal obtained in the presence of 2-deoxy-D-glucose did not vary significantly as compared with glucose. Delayed addition of K^+ (by 30 ms) to the mixture (enzyme+ 120 mM Na^+ATP+glucose) showed that only small fractions of population absorb H^+ in the absence of K^+. No H^+ absorption was observed in the absence of Na^+. Delayed mixing of Na^+ or K^+ did not have any effect on H^+ release. Effect of 2-deoxy-D-glucose on H^ absorption and release was almost the same as that of glucose at all combinations of Na^+ and K^+ concentrations. Results obtained have been discussed in terms of an extended kinetic scheme which shows that, in the presence of either glucose or 2-deoxy-D-glucose, significantly fewer enzyme molecules reache the E-P(3Na+) stage and that K^ plays an important role in the conversion of E1 .ADP.P(3Na^+) to H^+.E1-(3Na^+) complex. 相似文献
10.
Yoshinori Marunaka 《The Journal of membrane biology》1988,101(1):19-31
Summary To clarify the dependency of the Na/K coupling of the Na,K-pump on internal Na and external K concentrations in skeletal muscle, the ouabain-induced change in membrane potential, the ouabain-induced change in Na efflux and the membrane resistance were measured at various internal Na and external K concentrations in bullfrog sartorius muscle.Upon raising the internal Na concentration from 6 mmol/kg muscle water to 20 mmol/kg muscle water, the magnitude of the ouabain-induced change in membrane potential increased about eightfold and the magnitude of the ouabain-induced change in Na efflux increased about fivefold while the membrane resistance was not significantly changed. As the external K concentration increased from 1 to 10mm, the magnitude of the ouabain-induced change in membrane potential decreased (1/5.5 fold), while the magnitude of the ouabain-induced change in Na efflux increased (about 1.5-fold). The membrane resistance decreased upon raising the external K concentration from 1 to 10mm (1/2-fold). These observations imply that the values of the Na/K coupling of the Na,K-pump increases upon raising the internal Na concentration and decreases upon raising the external K concentration. 相似文献
11.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia.
The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during
lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells
exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase
endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates
the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines
(K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of
the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes
degradation via a lysosome/proteasome dependent mechanism. 相似文献
12.
The present study provides the first evidence that the abundance of catalytic alpha1-subunit of Na,K-ATPase increases in the course of T cell blast transformation. Immunodepressant cyclosporin A at anti-proliferative doses diminished the induction of alpha1 protein in activated lymphocytes. Furthermore, in competent T cells, IL-2 increases both the transport activity of Na/K pump and the content of Na,K-ATPase alpha1 protein in a time-dependent manner. A correlation was found between the long-term elevation in ouabain-sensitive Rb influxes and the increase in alpha1 protein content in late activated T cells. These results suggest that (1) the increased expression of Na,K-ATPase proteins underlie the cell cycle-dependent upregulation of ion pump during T cell transformation, and (2) IL-2 is involved in the regulated expression of Na,K-ATPase in human lymphocytes. 相似文献
13.
Abstract: Age-related changes in the expression of Na,K-ATPase α1- and α3-isoform mRNAs were analyzed by in situ hybridization in the Fischer-344 rat hippocampus. Quantification of signal density with cRNA probes in rat hippocampus at 3 months of age showed (a) α1 content is 1.5 times higher in granule than in pyramidal cell layers, whereas α3 content shows the opposite ratio and (b) α3 label is found in large clusters related to mossy cells and basket cells and in medium clusters corresponding to interneurons within the dendritic fields of CA1–3. In the 24-month-old rats as compared with the young animals, the α1 signal is increased more than sevenfold in the dendritic fields and is not significantly changed in perikaryal layers. The α3 signal is reduced about threefold ( p < 0.0001, ANOVA, n = 6) in perikaryal layers, is almost completely absent over the interneurons, basket cells, and mossy cells, and is not significantly changed in dendritic fields. These data indicate age-related, cell- and isoform-specific alterations in pretranslational regulation of Na,K-ATPase α isoforms. The striking changes in the dendritic fields, mossy cells, and GABAergic basket cells and interneurons may constitute early and sensitive markers for age-related alterations in hippocampal function, before cell loss. 相似文献
14.
Abstract: Endogenous inhibitors of Na,K-ATPase and ouabain-binding were partially purified from bovine central nervous system, and some of their properties were studied. They were eluted as low-molecular-weight fractions by gel filtration. They could be adsorbed by both Amberlite IR 120 and Amberlite IRA 400 at acidic and basic pH, respectively, indicating that they could act as both anions and cations at different pH. These inhibitors of ouabain-binding appeared to affect specific binding of ouabin, and Scatchard plot analysis showed that the in hibition was competitive, suggesting that they could bind to the same site as ouabain, presumably to Na,K-ATPase itself. The inhibitory activities were heat stable, but charring inactivated them completely. 相似文献
15.
The current voltage characteristic of the Na, K pump is described on the basis of a modified Post-Albers cycle. The voltage dependence of the rate constants is derived from the elementary chargetranslocations associated with the single reaction steps. Charge displacements result from movements of the sodium- or potassium-loaded binding sites, as well as from motions of polar groups in the pump molecule. If part of the transmembrane voltage drops between the alkali-ion binding sites and the aqueous solution, the binding constants become voltage-dependent. Depending on the values of the microscopic parameters, the current-voltage characteristic may assume a variety of different shapes. Saturating behaviour results when one or more voltage-independent reaction steps become rate limiting. Non-monotonic current-voltage curves exhibiting regions of negative pump conductance are predicted when, at least in one of the transitions, charge is moved against the direction of overall charge-translocation. The theoretical predictions are compared with recent experimental studies of voltage-dependent pump currents. 相似文献
16.
Lawrence G. Palmer 《The Journal of membrane biology》1985,83(1-2):57-69
Summary The Na conductance of the apical membrane of the toad urinary bladder was measured at different concentrations of Na both in the external medium and in the cell. Bladders were bathed in high K-sucrose medium to reduce basal-lateral resistance and voltage, and the transepithelial currents measured under voltage-clamp conditions. Amiloride was used as a specific blocker of the apical Na channel. At constant external Na, the internal Na concentration was increased by blocking the basallateral Na pump with ouabain. With high Na activity in the mucosal medium (86mm), increases in intracellular Na activity from 10 to over 40mm increased the amiloride-sensitive slope conductance at zero voltage while apical Na permeability, estimated from current-voltage plots using the constant field equation, decreased by less than 20%. Lowering the serosal Ca concentration from 1 to 0.1mm had no effect on the change inP
Na with increasing Nac, but increasing serosal Ca to 5mm enhanced the reduction inP
Na with increasing Na
c
, presumably by increasing Ca influx into the cell.P
Na was also reduced by serosal vanadate (0.5mm), a putative blocker of ATP-dependent Ca extrusion from the cell, and by acute exposure to CO2, which presumably acidifies the cytoplasm. Current-voltage relationships of the amiloridesensitive transport pathway were also measured in the absence of a Na gradient across the apical membrane. These plots show that outward current passes through the channels somewhat less easily than does inward current. The shape of theI-V relationships was not significantly altered by changes in cellular Na, Ca or H, indicating that the effects of these ions onP
Na are voltage independent. 相似文献
17.
The Na,K-ATPase 总被引:15,自引:0,他引:15
The energy dependent exchange of cytoplasmic Na+ for extracellular K+ in mammalian cells is due to a membrane bound enzyme system, the Na,K-ATPase. The exchange sustains a gradient for Na+ into and for K+ out of the cell, and this is used as an energy source for creation of the membrane potential, for its de- and repolarisation, for regulation of cytoplasmic ionic composition and for transepithelial transport. The Na,K-ATPase consists of two membrane spanning polypeptides, an -subunit of 112-kD and a -subunit, which is a glycoprotein of 35-kD. The catalytic properties are associated with the -subunit, which has the binding domain for ATP and the cations. In the review, attention will be given to the biochemical characterization of the reaction mechanism underlying the coupling between hydrolysis of the substate ATP and transport of Na+ and K+. 相似文献
18.
Dolgova NV Kamanina IuV Akimova OA Orlov SN Rubtsov AM Lopina OD 《Biochemistry. Biokhimii?a》2007,72(8):863-871
Immunoprecipitation of Na,K-ATPase from kidney homogenate by antibodies against alpha1-subunit results in the precipitation of several proteins together with the Na,K-ATPase. A protein with molecular mass of about 67 kD interacting with antibodies against melittin (melittin-like protein, MLP) was found in the precipitate when immunoprecipitation was done in the presence of ouabain. If immunoprecipitation was done using antibodies against melittin, MLP and Na,K-ATPase alpha1-subunit were detected in the precipitate, and the amount of alpha1-subunit in the precipitate was increased after the addition of ouabain to the immunoprecipitation medium. MLP was purified from mouse kidney homogenate using immunoaffinity chromatography with antibodies against melittin. The addition of MLP to purified FITC-labeled Na,K-ATPase decreases fluorescence in medium with K+ and increases it in medium with Na+. The enhancement of fluorescence depends upon the MLP concentration. The N-terminal sequence of MLP determined by the Edman method is the following: HPPKRVRSRLNG. No proteins with such N-terminal sequence were found in the protein sequence databases. However, we revealed five amino acid sequences that contain this peptide in the middle part of the chain at distance 553 amino acids from the C-terminus (that corresponds to protein with molecular mass of about 67 kD). Analysis of amino acid sequence located between C-terminus and HPPKRVRSRLNG in all found sequences has shown that they were highly conservative and include WD40 repeats. It is suggested that the 67-kD MLP either belongs to the found protein family or was a product of proteolysis of one of them. 相似文献
19.
Using cupric phenanthroline as a cross-linking agent, we have shown that melittin induced time-dependent aggregations of Na,K-ATPase in microsomal fractions and in preparations of purified Na,K-ATPase from duck salt glands. Incubation of melittin with these preparations also led to the progressive loss of Na,K-ATPase activity. At melittin/protein molar ratio of 5:1, we did not observe inhibition of Na,K-ATPase in the microsomal fraction but the process of enzyme aggregation occurred. At higher melittin/protein molar ratios (10:1 and 30:1), the inhibition of the enzyme and its aggregation proceeded simultaneously but the rates of these processes and maximal values achieved were different. At a melittin/protein ratio of 30:1, Na,K-ATPase inhibition may be described as a biexponential curve with the values for pseudo-first order rate constants being 2.7 and 0.15 min−1. However, the aggregation may be presented by a monoexponential curve with a pseudo-first order rate constant of 0.15 min−1. In purified preparations of Na,K-ATPase, the maximal aggregation (about 90%) was achieved at a melittin/protein molar ratio of 2:1, and a further increase in the melittin/protein ratio increased the rate of aggregation but did not affect the value of maximal aggregation. The results show that melittin induced both aggregation and inhibition of Na,K-ATPase but these two processes proceeded independently. 相似文献
20.
Alicia A. McDonough Andrew Hiatt Isidore S. Edelman 《The Journal of membrane biology》1982,69(1):13-22
Summary Antibodies have been produced, in three rabbits, to Na/K-ATPase purified from guinea pig renal outer medulla. Each rabbit produced antibodies to both the (catalytic) and the (glycoprotein) subunits of Na/K-ATPase. The titers of the anti- and anti- antibodies varied with time and between rabbits. None of the antisera inhibited Na/K-ATPase activity under various preincubation conditions. A method is presented for separating small amounts of anti- subunit from anti- subunit antibodies. There was not cross-reactivity of antibodies to one subunit with the other subunit. The subunit of the Na/K-ATPase was cleaved into a 41,000-dalton peptide (that contains the ATP phosphorylating site) and a 58,000-dalton hydrophobic peptide as described by Castro and Farley (Castro, J., Farley, R.A., 1979,J. Biol. Chem.
254:2221–2228). Anti- antibodies from all of the rabbits reacted with both proteolytic fragments. The anti-guinea pig Na/K-ATPase antisera (pooled) cross-reacted with the subunit of Na/K-ATPase from human, cow, dog, rabbit, rat mouse, turtle, and toad; and with the subunit from human, rat, and mouse. The loci of cross-reactivity were investigated using partially purified canine kidney Na/K-ATPase cleaved with trypsin as described above. The antisera from rabbits 1 and 2 cross-reacted with the 41,000-dalton peptide from the dog but very little with the 58,000-dalton peptide. No cross-reactivity was observed with antiserum from rabbit 3 to either fragment. Guinea pig kidney RNA was translated in a rabbit reticulocyte lysate system followed by immunoprecipitation with the antisera. The molecular weight of the cell-free synthesized chain was 96,000 daltons. Its identity was established with purified anti- antibodies and by immunocompetition with purified Na/K-ATPase and Ca-ATPase. Translation of the subunit was not detected in this system. 相似文献