首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Adult chicken skeletal muscle cells express polypeptides that are antigenically related to alpha-spectrin (Mr 240,000) and beta-spectrin (Mr 220,000-225,000), the major components of the erythrocyte membrane-skeleton, and to ankyrin (Mr 237,000; also termed goblin in chicken erythrocytes), which binds spectrin to the transmembrane anion transporter in erythrocytes. Comparative immunoblotting of SDS-solubilized extracts of presumptive myoblasts and fully differentiated myotubes cultured in vitro demonstrated that there is a dramatic accumulation of ankyrin and alpha- and beta-spectrin during myogenesis and a concomitant switch in the subunit composition of spectrin from alpha gamma to alpha beta. Analysis of early time points in myogenesis (12-96 h) revealed that these changes occur shortly after the main burst of cell fusion. To determine the temporal relationship between cell fusion and the accumulation of ankyrin and alpha- and beta-spectrin, we treated presumptive myoblasts with 2 mM EGTA, which resulted in the complete inhibition of cell fusion. The incorporation of [35S]methionine into total protein and, specifically, into alpha-, gamma-, and beta-spectrin remained the same in EGTA-treated and control cells. Analysis by immunoblotting of the amounts of ankyrin and alpha- and beta-spectrin in fusion-blocked cells revealed that there was no effect on accumulation for the first 19 h. However, there was then a dramatic cessation in their accumulation, and thereafter, the amount of each protein at steady state remained constant. Upon release from the EGTA block, the cells fused rapidly (less than 11 h), and the accumulation of ankyrin and alpha- and beta-spectrin was reinitiated after a lag period of 3-5 h at a rate similar to that in control cells. The inhibition in the accumulation of newly synthesized ankyrin, alpha-spectrin, and beta-spectrin in EGTA-treated myoblasts was not characteristic of all structural proteins, since the accumulation of the muscle-specific intermediate filament protein desmin was the same in control and fusion-blocked cells. These results show that in myogenesis, the synthesis of ankyrin and alpha- and beta-spectrin and their accumulation as a complex, although concurrent, are not coupled events. We hypothesize that the extent of assembly of these components of the membrane-skeleton in muscle cells is determined by a control mechanism(s) operative at the posttranslational level that is triggered near the time of cell fusion and the onset of terminal differentiation.  相似文献   

2.
Ankyrin is an extrinsic membrane protein in human erythrocytes that links the alpha beta-spectrin-based extrinsic membrane skeleton to the membrane by binding simultaneously to the beta-spectrin subunit and to the transmembrane anion transporter. To analyse the temporal and spatial regulation of assembly of this membrane skeleton, we investigated the kinetics of synthesis and assembly of ankyrin ( goblin ) with respect to those of spectrin in chicken embryo erythroid cells. Electrophoretic analysis of Triton X-100 soluble and cytoskeletal fractions show that at steady state both ankyrin and spectrin are detected exclusively in the cytoskeleton. In contrast, continuous labeling of erythroid cells with [35S]methionine, and immunoprecipitation of ankyrin and alpha- and beta-spectrin, reveals that newly synthesized ankyrin and spectrin are partitioned into both the cytoskeletal and Triton X-100 soluble fractions. The soluble pools of ankyrin and beta-spectrin reach a plateau of labeling within 1 h, whereas the soluble pool of alpha-spectrin is substantially larger and reaches a plateau more slowly, reflecting an approximately 3:1 ratio of synthesis of alpha- to beta-spectrin. Ankyrin and beta-spectrin enter the cytoskeletal fraction within 10 min of labeling, and the amount assembled into the cytoskeletal fraction exceeds the amount present in their respective soluble pools within 1 h of labeling. Although alpha-spectrin enters the cytoskeletal fraction with similar kinetics to beta-spectrin and ankyrin, and in amounts equimolar to beta-spectrin, the amount of cytoskeletal alpha-spectrin does not exceed the amount of soluble alpha-spectrin even after 3 h of labeling. Pulse-chase labeling experiments reveal that ankyrin and alpha- and beta-spectrin assembled into the cytoskeleton exhibit no detectable turnover, whereas the Triton X-100 soluble polypeptides are rapidly catabolized, suggesting that stable assembly of the three polypeptides is dependent upon their association with their respective membrane receptor(s). The existence in the detergent-soluble compartment of newly synthesized ankyrin and alpha- and beta-spectrin that are catabolized, rather than assembled, suggests that ankyrin and spectrin are synthesized in excess of available respective membrane binding sites, and that the assembly of these polypeptides, while rapid, is not tightly coupled to their synthesis. We hypothesize that the availability of the high affinity receptor(s) localized on the membrane mediates posttranslationally the extent of assembly of the three cytoskeletal proteins in the correct stoichiometry, their stability, and their spatial localization.  相似文献   

3.
The microtubule-associated proteins MAPs 1 and 2 from pig brain have been found to react with antibodies directed against human ankyrin and spectrin, respectively (Bennett and Davis, 1981; Davis and Bennett, 1982). In a complementary approach we have prepared antibodies against MAP1 alpha. MAP1 gamma and MAP2 purified from pig brain and tested their reactivity with human erythrocyte membrane proteins. Anti-MAP1 alpha was shown to react with alpha and beta-spectrin and with protein 4.1; anti-MAP1 gamma reacted with alpha-spectrin and ankyrin and with a 60 K peptide which copurified with human spectrin. Finally anti-MAP2 was specific for beta-spectrin and protein 4.2. The biological function of protein 4.2 is still unknown but details on the interactions between ankyrin, spectrin and protein 4.1 and their role in mediating the linkage of oligomeric actin on the erythrocyte membrane are well documented. The present results, which demonstrate extended immunological analogies between pig brain high molecular weight MAPs and human erythrocyte membrane proteins, may reflect the presence, in the two families of proteins, of similar functionally important epitopes.  相似文献   

4.
Spectrin is an ubiquitous protein in metazoan cells, and its flexibility is one of the keys to maintaining cellular structure and organization. Both alpha-spectrin and beta-spectrin polypeptides consist primarily of triple coiled-coil modular repeat units, and two important factors that determine spectrin flexibility are the bending flexibility between two consecutive repeat units and the conformational flexibility of individual repeat units. Atomistic molecular dynamics (MD) simulations are used here to study double spectrin repeat units (DSRUs) from the human erythrocyte beta-spectrin (HEbeta89) and the chicken brain alpha-spectrin (CBalpha1617). From the results of MD simulations, a highly conserved Trp residue in the A-helix of most repeat units that has been suggested to be important in conferring stability to the coiled-coil structures is found not to have a significant effect on the conformational flexibility of individual repeat units. Characterization of the bending flexibility for two consecutive repeats of spectrin via atomistic simulations and coarse-grained (CG) modeling indicate that the bending flexibility is governed by the interactions between the AB-loop of the first repeat unit, the BC-loop of the second repeat unit and the linker region. Specifically, interactions between residues in these regions can lead to a strong directionality in the bending behavior of two repeat units. The biological implications of these finding are discussed.  相似文献   

5.
The Mr 245,000 calmodulin-binding protein of the dogfish erythrocyte cytoskeleton (D245) has been compared with human erythrocyte spectrin and mammalian brain fodrin [J. Levine and M. Willard (1981) J. Cell Biol. 90, 631-643]. Mammalian erythrocyte alpha-spectrin, brain alpha-fodrin, and D245 are all localized in the cell surface-associated cytoskeleton, and have similar molecular weights. Like mammalian erythrocyte spectrin, D245 was extracted from erythrocyte ghosts under low-ionic-strength conditions. However, D245 failed to bind an antibody which reacted strongly with both subunits of human erythrocyte spectrin. Unlike mammalian erythrocyte alpha- and beta-spectrin, D245 bound calmodulin in the absence of urea both in a "gel-binding" assay and in situ using azidocalmodulin [D.C. Bartelt, R.K. Carlin, G.A. Scheele, and W.D. Cohen (1982) J. Cell Biol. 95, 278-284]. Striking similarities were noted between D245 and alpha-fodrin in that both exhibited (a) comparable calcium-dependent calmodulin binding properties, (b) strong reactivity with two different anti-fodrin antibody preparations, (c) similar reactivity with antibody to brain CBP-I, now believed to be fodrin, (d) proteolytic degradation yielding an Mr 150,000 calmodulin-binding fragment, and (e) lack of reactivity with an anti-spectrin antibody. A protein with calmodulin-binding and anti-fodrin-binding properties similar to D245 was detected in cytoskeletal preparations of chicken erythrocytes. Moderate and consistent cross-reactivity of anti-fodrin with human erythrocyte alpha-spectrin was also observed. The data indicate that D245 is functionally and immunologically more closely related to alpha-fodrin than to alpha-spectrin of the mammalian erythrocyte.  相似文献   

6.
7.
E Lazarides  W J Nelson  T Kasamatsu 《Cell》1984,36(2):269-278
The chicken optic system contains a brain-specific form of spectrin (alpha gamma-spectrin or fodrin) as a major membrane-associated, axonally transported cytoskeletal protein. We show here that the chicken optic system also contains an erythrocyte-specific form of spectrin (alpha beta' beta-spectrin), which has a more restricted distribution; it is confined to the plasma membrane of dendrites and cell bodies of retinal ganglion cells, is absent from the optic nerve fibers, and is not axonally transported from the retina into the optic nerve. During development of the optic system, the expression of alpha gamma-spectrin is constitutive in all cell types. On the other hand, the accumulation of alpha beta' beta-spectrin is detected in only the ganglion cells, and at a time in development which coincides with the phase of synaptogenesis. These results indicate the existence of a developmentally regulated mechanism that topologically segregates the erythroid and brain forms of spectrin from each other, and the former from axonal transport, and suggest that erythroid spectrin may be involved in establishing restricted membrane-cytoskeletal domains in neurons during synaptogenesis, and maintaining them in the adult cell.  相似文献   

8.
Spectrin, the major constituent protein of the erythrocyte membrane skeleton, exhibits chaperone activity by preventing the irreversible aggregation of insulin at 25 degrees C and that of alcohol dehydrogenase at 50 degrees C. The dimeric spectrin and the two subunits, alpha-spectrin and beta-spectrin prevent such aggregation appreciably better, 70% in presence of dimeric spectrin at an insulin:spectrin ratio of 1:1, than that in presence of the tetramer of 25%. Our results also show that spectrin binds to denatured enzymes alpha-glucosidase and alkaline phosphatase during refolding and the reactivation yields are increased in the presence of the spectrin derivatives when compared with those refolded in their absence. The unique hydrophobic binding site on spectrin for the fluorescence probe, 6-propionyl-2-(dimethylamino)naphthalene (Prodan) has been established to localize at the self-associating domain with the binding stoichiometry of one Prodan/both dimeric and tetrameric spectrin. The other fluorescence probe, 1-anilinonaphthalene-8-sulfonic acid, does not show such specificity for spectrin, and the binding stoichiometry is between 3 and 5 1-anilinonaphthalene-8-sulfonic acid/dimeric and tetrameric spectrin, respectively. Regions in alpha- and beta-spectrins have been found to have sequence homology with known chaperone proteins. More than 50% similarities in alpha-spectrin near the N terminus with human Hsp90 and in beta-spectrin near the C terminus with human Hsp90 and Escherichia coli DnaJ have been found, indicating a potential chaperone-like sequence to be present near the self-associating domain that is formed by portions of alpha-spectrin near the N terminus and the beta-spectrin near the C terminus. There are other patches of sequences also in both the spectrin polypeptides, at the other termini as well as in the middle of the rod domain having significant homology with well known chaperone proteins.  相似文献   

9.
Human erythrocyte spectrin dimers associate at the N-terminal region of alpha spectrin (alpha N) and the C-terminal region of beta-spectrin (beta C) to form tetramers. We have prepared model peptides to study the tetramerization region. Based on phasing information obtained from enzyme digests, we prepared spectrin fragments consisting of the first 156 amino-acid residues and the first 368 amino-acid residues of alpha-spectrin (Sp alpha 1-156 and Sp alpha 1-368, respectively), and found that both peptides associate with a beta-spectrin model peptide, with an affinity similar to that found in alpha beta dimer tetramerization. Spin label EPR studies show that the region consisting of residues 21-46 in alpha-spectrin is helical even in the absence of its beta-partner. Multi-dimensional nuclear magnetic resonance studies of samples with and without a spin label attached to residue 154 show that Sp alpha 1-156 consists of four helices, with the first helix unassociated with the remaining three helices, which bundle to form a triple helical coiled coil bundle. A comparison of the structures of erythrocyte spectrin with other published structures of Drosophila and chicken brain spectrin is discussed. Circular dichroism studies show that the lone helix in Sp alpha-156 associates with helices in the beta peptide to form a coiled coil bundle. Based on NMR and CD results, we suggest that the helices in Sp alpha 1-156 exhibit a looser (frayed) conformation, and that the helices convert to a tighter conformation upon association with its beta-partner. This suggestion does not rule out possible conversion of a non-structured conformation to a structured conformation in various parts of the molecule upon association. Spectrin mutations at residues 28 and 45 of alpha-spectrin have been found in patients with hereditary elliptocytosis. NMR studies were also carried out on Sp alpha 1-156R28S, Sp alpha 1-156R45S and Sp alpha 1-156R45T. A comparison of the structures of Sp alpha 1-156 and Sp alpha 1-156R28S, Sp alpha 1-156R45S and Sp alpha 1-156R45T is discussed.  相似文献   

10.
Sea urchin egg spectrin has been purified from a homogenate of unfertilized Strongylocentrotus purpuratus eggs using standard biochemical procedures. SDS-PAGE analysis of the molecule revealed a closely spaced, high molecular weight doublet at 237/234 kDa (present in an equimolar ratio). Rotary shadowed images of egg spectrin revealed a double-stranded, elongate, flexible rod-shaped contour, measuring 210 nm in length and approximately 4-8 nm in width. Additionally, this molecule is shown to be immunologically related to avian erythroid spectrin, since it crossreacts with antibodies prepared against the chicken erythrocyte alpha-spectrin/240 kDa subunit. The interaction of egg spectrin with actin was examined by sedimentation and falling-ball viscometry assays. The binding and cross linking properties of spectrin to actin demonstrate a unique Ca++-sensitive regulation at micromolar Ca++ concentrations. This observation provides new insight into the way Ca++ may regulate spectrin-actin interactions in vitro and further suggests possible structural and modulatory roles for egg spectrin in the developing sea urchin embryo.  相似文献   

11.
Terminal differentiation of lens fiber cells resembles the apoptotic process in that organelles are lost, DNA is fragmented, and changes in membrane morphology occur. However, unlike classically apoptotic cells, which are disintegrated by membrane blebbing and vesiculation, aging lens fiber cells are compressed into the center of the lens, where they undergo cell-cell fusion and the formation of specialized membrane interdigitations. In classically apoptotic cells, caspase cleavage of the cytoskeletal protein alpha-spectrin to approximately 150-kDa fragments is believed to be important for membrane blebbing. We report that caspase(s) cleave alpha-spectrin to approximately 150-kDa fragments and beta-spectrin to approximately 120- and approximately 80-kDa fragments during late embryonic chick lens development. These fragments continue to accumulate with age so that in the oldest fiber cells of the adult lens, most, if not all, of the spectrin is cleaved to discrete fragments. Thus, unlike classical apoptosis, where caspase-cleaved spectrin is short lived, lens fiber cells contain spectrin fragments that appear to be stable for the lifetime of the organism. Moreover, fragmentation of spectrin results in reduced membrane association and thus may lead to permanent remodeling of the membrane skeleton. Partial and specific proteolysis of membrane skeleton components by caspases may be important for age-related membrane changes in the lens.  相似文献   

12.
Brain ankyrin was purified from pig brain membranes in milligram quantities by a procedure involving affinity chromatography on erythrocyte spectrinagarose. Brain ankyrin included two polypeptides of Mr = 210,000 and 220,000 that were nearly identical by peptide mapping and were monomers in solution. Brain ankyrin and erythrocyte ankyrin are closely related proteins with the following properties in common: 1) shared antigenic sites, 2) high-affinity binding to the spectrin beta subunit at the midregion of spectrin tetramers, 3) a binding site for the cytoplasmic domain of the erythrocyte anion channel, 4) a binding site for tubulin, 5) a similar domain structure with a protease-resistant domain of Mr = 72,000 that contains the spectrin-binding activity and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg of membrane protein in demyelinated membranes based on radioimmunoassay with antibody raised against brain ankyrin and affinity purified on brain ankyrin-agarose. Brain spectrin tetramers are present at 30 pmol/mg of membrane protein. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes. Brain ankyrin also may attach microtubules to membranes independently of spectrin and has the potential to interconnect microtubules and spectrin-associated actin filaments.  相似文献   

13.
Immunological screening of a chicken gizzard cDNA expression library was used to isolate two clones encoding a part of the non-erythroid spectrin-like protein. Clones were identified by immunoblotting of the polypeptides synthesized in Escherichia coli cells transformed with cDNA cloned in the pUC8 plasmid vector using polyclonal rabbit antibodies raised against bovine non-erythroid spectrin. The sequence of an approximately 1.5-kb cDNA insert of one clone was determined. Analysis of the predicted amino acid sequence reveals that, despite differences in immunological cross-reactivity and peptide maps, the chicken non-erythroid and the human erythrocyte spectrins are highly homologous proteins. Like the human erythrocyte spectrin, the chicken smooth muscle spectrin appears also to be constructed from repeated, homologous structures of 106 amino acid residues. This is probably a universal structure motif of spectrins.  相似文献   

14.
Drosophila alpha-spectrin cDNA sequences were isolated from a lambda gt11 expression library. These cDNA clones encode fusion proteins that include portions of the Drosophila alpha-spectrin polypeptide as shown by a number of structural and functional criteria. The fusion proteins elicited antibodies that reacted strongly with Drosophila and vertebrate alpha-spectrins and a comparison of cyanogen bromide peptide maps demonstrated a clear structural correspondence between one fusion protein and purified Drosophila alpha-spectrin. Alpha-spectrin fusion protein also displayed calcium-dependent calmodulin-binding activity in blot overlay experiments and one fusion protein bound specifically to both Drosophila and bovine brain beta-spectrin subunits on protein blots. A region of the Drosophila cDNA cross-hybridized at lowered stringency with an avian alpha-spectrin cDNA. Together these data show that the composition, structure, and binding properties of the spectrin family of proteins have been remarkably well conserved between arthropods and vertebrates. Drosophila cDNA hybridized to an mRNA of greater than or equal to 9 kb on blots of total Drosophila poly A+ RNA; and hybridized in situ to a single site in polytene region 62B, 1-7. This result and Southern blot analysis of genomic DNA indicate that the sequences are likely to be single copy in the Drosophila genome.  相似文献   

15.
Brain ankyrin. Purification of a 72,000 Mr spectrin-binding domain   总被引:19,自引:0,他引:19  
Polypeptides of Mr = 190,000-220,000 that cross-react with erythrocyte ankyrin were detected in immunoblots of membranes from pig lens, pig brain, and rat liver. The cross-reacting polypeptides from brain were cleaved by chymotrypsin to fragments of Mr = 95,000 and 72,000 which are the same size as fragments obtained with erythrocyte ankyrin. The brain 72,000 Mr fragment associated with erythrocyte spectrin, and the binding occurred at the same site as that of erythrocyte ankyrin 72,000 Mr fragment since (a) brain 72,000 Mr fragment was adsorbed to erythrocyte spectrin-agarose and (b) 125I-labeled erythrocyte spectrin bound to brain 72,000 Mr fragment following transfer of the fragment from a sodium dodecyl sulfate gel to nitrocellulose paper, and this binding was displaced by erythrocyte ankyrin 72,000 Mr fragment. Brain 72,000 Mr fragment was purified about 400-fold by selective extraction and by continuous chromatography on columns attached in series containing DEAE-cellulose followed by erythrocyte spectrin coupled to agarose, and finally hydroxylapatite. The brain 72,000 Mr fragment was not derived from contaminating erythrocytes since peptide maps of pig brain and pig erythrocyte 72,000 Mr fragments were distinct. The amount of brain 72,000 Mr fragment was estimated as 0.28% of membrane protein or 39 pmol/mg based on radioimmunoassay with 125I-labeled brain fragment and antibody against erythrocyte ankyrin. Brain spectrin tetramer was present in about the same number of copies (30 pmol/mg of membrane protein) based on densitometry of Coomassie blue-stained sodium dodecyl sulfate gels. The binding site on brain spectrin for both brain and erythrocyte ankyrin 72,000 Mr fragments was localized by electron microscopy to the midregion of spectrin tetramers about 90 nM from the near end and 110 nM from the far end. These studies demonstrate the presence in brain membranes of a protein closely related to erythrocyte ankyrin, and are consistent with a function of the brain ankyrin as a membrane attachment site for brain spectrin.  相似文献   

16.
From the spectrin gene to the assembly of the membrane skeleton   总被引:1,自引:0,他引:1  
The complete nucleotide sequence coding for the chicken brain alpha-spectrin was determined. It comprises the entire coding frame, 5'- and 3'-untranslated sequences terminating in a poly(A)-tail. The deduced amino acid sequence shows that the alpha-chain contains 22 segments, 20 of which correspond to the typical 106 residue repeat of the human erythrocyte spectrin. Some segments non-homologous to the repeat structure reside in the middle and COOH-terminal regions. Sequence comparisons with other proteins show that these segments evidently harbour some structural and functional features such as: homology to alpha-actinin and dystrophin, two typical EF-hand structures (calcium-binding) and a putative calmodulin-binding site in the COOH-terminus and a sequence homologous to various src-tyrosine kinases and to phospholipase C in the middle of the molecule. Comparison of our sequence with other partial alpha-spectrin sequences shows that alpha-spectrin is well conserved in different species and that the human erythrocyte alpha-spectrin is divergent.  相似文献   

17.
Immunocytochemical studies of spectrin in hamster cardiac tissue   总被引:4,自引:0,他引:4  
The spectrins are a family of cytoskeletal-membrane proteins that have a wide tissue distribution. In the present study, we employed polyclonal antibodies made against mammalian and avian erythroid spectrins as well as mammalian brain spectrin to assess their presence and distributions in the mammalian heart. Western blot analyses revealed that all three antibodies were specific for a 240,000 molecular weight alpha-spectrin subunit found in hamster erythrocyte ghost homogenates, whole hamster heart, and isolated hamster cardiac myofibril homogenates. Spectrin staining was absent from the Triton X-100-extracted supernatant fraction of myofibril preparations, suggesting that the protein is linked to the myofibril precipitate after exposure to the detergent. Frozen, unfixed, 2-microns-thick; sections of adult. Syrian golden hamster cardiac tissue exhibited strong immunofluorescent staining of intercalated discs and Z-bands using all three antibodies. In addition, the mammalian erythroid spectrin antibodies showed staining of the sarcolemma, and in cross section, revealed a delicate internal network of staining that appears to surround individual myofibrils. This may be T-tubule-associated staining. Myofibrils isolated from cardiac myocytes using Triton X-100 show positive Z-band staining using all three antibodies. Double staining with Texas Red-labeled monoclonal desmin and FITC-labeled polyclonal spectrin antibodies revealed that both stained the myofibrillar Z-line regions. These results demonstrate that spectrin is closely associated with the membranes, myofibrils, and intermediate filaments in the mammalian heart.  相似文献   

18.
A study of human erythrocyte and brain spectrin with particular emphasis on the beta subunits revealed a structural homology but functional dissimilarity between these two molecules. Six monoclonal antibodies raised to human erythrocyte beta spectrin identify three of the four proteolytically defined domains of erythrocyte beta spectrin. Five of these monoclonal antibodies cross-react with human brain spectrin. None of a previously identified set of alpha erythrocyte spectrin monoclonal antibodies [Yurchenco et al: J Biol Chem 257:9102, 1982] reacted with brain spectrin. A domain map generated by limited tryptic digestion shows that brain spectrin is composed of proteolytically resistant domains analogous to erythrocyte spectrin, but the brain protein is more basic. The binding of brain spectrin to erythrocyte ankyrin, both in solution and on erythrocyte IOVs, yielded an association constant approximately 100 time weaker than for erythrocyte spectrin. The binding of azido-calmodulin under native conditions was specific for the erythrocyte beta subunit but was not calcium dependent. In contrast, azido-calmodulin bound only to the alpha subunit of brain spectrin in a calcium-dependent manner. The similarity of structure but modified functional characteristics of the brain and erythrocyte beta spectrins suggest that these proteins serve different cellular roles.  相似文献   

19.
Comparison of spectrin isolated from erythroid and non-erythroid sources   总被引:13,自引:0,他引:13  
Spectrin from erythrocytes and two other tissues (brain and intestine) were isolated from two distant species, pig and chicken; some structural and functional properties were compared. A quantitative antibody inhibition assay was used to determine that antibodies to mammalian red cell spectrin cross-react very poorly, if at all, with their non-erythroid (brain) counterpart and similarly antibodies to pig brain spectrin (fodrin) cross-react very weakly with erythroid spectrin. By contrast, antibodies which were directed against the 240000-Mr subunit of avian fodrin were completely inhibited with avian spectrin and vice versa. To analyze the structural relatedness of these molecules further we compared the chymotryptic iodinated peptide maps generated from each individual subunit. Consistent with the antibody results, we find little (less than 10%) homology between peptides derived from mammalian fodrin and spectrin, but complete homology (100%) of the peptides derived from the 240000-Mr subunits of chicken fodrin, spectrin and another related molecule from intestine, TW260/240. Whereas the peptide maps of fodrin (brain spectrin) revealed striking similarity between divergent species, suggesting a high degree of structural conservation, the peptide maps of erythrocyte spectrin was highly variable between species, indicating that it has diverged considerably in mammalian evolution. In addition we have compared a functional activity of mammalian spectrins, the ability to bind calmodulin, using two different assays. Both results show that, whereas fodrin-calmodulin interaction can be readily demonstrated, the binding to mammalian erythroid spectrin is negligible. This suggests that the high-affinity calmodulin site present on fodrin has been lost from spectrin in mammalian evolution.  相似文献   

20.
C M Woods  E Lazarides 《Cell》1985,40(4):959-969
Analysis of the turnover of unassembled proteins during the assembly of the erythroid membrane skeleton has revealed that alpha- and beta-spectrin, two structurally related, high molecular weight proteins, are degraded in a selective manner by two distinct intracellular pathways. Unassembled alpha-spectrin (t1/2 approximately equal to 2 hr) is degraded by a system with all the pharmacological characteristics of a membrane-bound, lysosomal-type pathway. This result illustrates for the first time the selective degradation of an intracellular short-lived, unassembled protein by a lysosomal pathway. In contrast, unassembled beta-spectrin is degraded extremely rapidly (t1/2 approximately equal to 15-20 min at 38 degrees C) by a soluble cytoplasmic system in an apparently ATP-independent manner. These observations suggest that the selective and rapid degradation of beta-spectrin serves an important regulatory role in the topogenesis of the spectrin-based membrane skeleton in the chicken erythrocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号