首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Ammonium (NH 4 + ) transport was investigated in Nostoc muscorum ISU (wild type) and spontaneous mutants resistant to cyanophage N-1 (Nm/N-1), streptomycin (Nm/Sm) and methylamine (Nm/MA). N2-fixing wild-type cells transported NH 4 + via two transport systems: the high-affinity (K m 11 M) and low-affinity (K m 66 M), which formed 10 and 50-fold concentration gradients, respectively. The high-affinity system of Nm/MA (K m 11 M) was similar to the wild type but the low-affinity system had reduced affinity for NH 4 + (K m 125 M), while Nm/N-1 and Nm/Sm mutants had only a high-affinity transport system (K m 20 and 28 M, respectively). The growth of mutant Nm/N-1 was more sensitive to 1 mM NH 4 + or methylamine than other strains, and also glutamine-synthetase activity was most reduced in NH 4 + -grown cells. l-methionine-d, l-sulfoximine (20 M) treatment of N2-grown Nm/N-1 cells resulted in a higher rate of NH 4 + efflux. The apparent alterations in kinetic constants of NH 4 + transport in mutants and glutamine synthetase activity suggested that NH 4 + in N. muscorum is transported by specific carrier(s) and the transport is genetically controlled.  相似文献   

2.
Summary The activity of ALA-dehydratase from corn seedlings is affected by Mn++, Fe++, Pb++, Cu++, Zn++ and Sn+4 ions, in vivo Mn++ and Fe++ are ativators while Pb++ and Sn+4 are inhibitors; in vitro Cu++ and Zn++ are inhibitors. The kinetic parameters (Vmax and KM) support the hypothesis that Mn, Fe, Sn and Pb ions act on the biosynthesis of the enzyme and Zn and Cu ions on the enzyme-substrate affinity. Some related metal-organic compounds interrere in vivo on the ALA-dehydratase activity modifying the kinetic parameters, therefore the enzyme biogenesis and/or enzyme-sustrat affinity are affected.  相似文献   

3.
Addition of Na+ to the K+-loadedVibrio alginolyticus cells, creating a 250-fold Na+ gradient, is shown to induce a transient increase in the intracellular ATP concentration, which is abolished by the Na+/H+ antiporter, monensin. The pNa-supported ATP synthesis requires an additional driving force supplied by endogenous respiration or, alternatively, by a K+ gradient (high [K+] inside). In the former case, ATP formation is resistant to the protonophorous uncoupler. Dicyclohexylcarbodiimide and diethylstilbestrol, but not vanadate, completely inhibit Na+ pulse-induced ATP formation. The data agree with the assumption that Na+-ATP-synthase is involved in oxidative phosphorylation inV. alginolyticus. Interrelation of H+ and Na+ cycles in bacteria is discussed.Abbreviations and electrochemical gradients of H+ and Na+, respectively - transmembrane electric potential difference - pH, pNa, and pK concentration gradients of H+, Na+, and K+, respectively - CCCP carbonyl cyanidem-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diesthylstilbestrol - HQNO 2-heptyl-4-hydroxyquinolineN-oxide - Tricine N[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

4.
Growth, K+ content, and alkaloid production were compared in nonorganogenetic callus cultures ofNicotiana tabacum cv. Burley 21 grown at 25°C in the dark on two different media: a basal medium with 1 M -naphthaleneacetic acid and 1 M kinetin, and one with 1 M -naphthaleneacetic acid and 1 M 4PU-30 (N-(2-chloro-4-pyridyl)-N-phenylurea). These callus tissues behaved differently not only in growth and K+ content but also in alkaloid production. In comparison to cultures grown with kinetin, those grown with 4PU-30 showed a significantly higher fresh weight and dry weight and K+ content during the growth period studied. The data clearly indicate a positive correlation between K+ uptake rate stimulated by 4PU-30 and cell enlargement rate. However, the alkaloid biosynthesis in the callus tissues was activated by the supply of kinetin and diminished by that of 4PU-30. It thus appears that cellular enlargement of meristematic tissue stimulated by 4PU-30 limited alkaloid production.  相似文献   

5.
Summary Effect of amiloride, ouabain, and Ba++ on the nonsteady-state Na–K pump flux and short-circuit current in isolated frog skin epithelia.The active Na+ transport across isolated frog skin occurs in two steps: passive diffusion across the apical membrane of the cells followed by an active extrusion from the cells via the Na+–K+ pump at the basolateral membrane. In isolated epithelia with a very small Na+ efflux, the appearing Na+-flux in the basolateral solution is equal to the rate of the pump, whereas the short-circuit current (SCC) is equal to the active transepithelial Na+ transport. It was found that blocking the passive diffusion of Na+ across the apical membrane (addition of amiloride) resulted in an instantaneous inhibition of the SCC (the transepithelial Na+ transport, whereas the appearing flux (the rate of the Na+–K+ pump) decreased with a halftime of 1.9 min. Addition of the Na+–K+ pump inhibitor ouabain (0.1mm) resulted in a faster and bigger inhibition of the appearing flux than of the SCC. Thus, by simultaneous measurement of the SCC and the appearing Na+ flux one can elucidate whether an inhibitor exerts its effect by inhibiting the pump or by decreasing the passive permeability. Addition of the K+ channel inhibitor Ba++, in a concentration which gave maximum inhibition of the SCC, had no effect on the appearing flux (the rate of the Na–K pump) in the first 2 min, although the inhibition of the SCC was already at its maximum.It is argued that in the short period, where the Ba++-induced inhibition of SCC is at its maximum and the appearing flux in unchanged, the decrease in the SCC (SCC) is equal to the net K+ flux via the Na+–K+ pump, and the coupling ratio () of the Na+–K+ pump can be calculated from the following equation =SCC t=0/SCC where SCC t=0 is the steady-state SCC before the addition of Ba++.  相似文献   

6.
Summary The histochemical activities of succinic dehydrogenase (SDH) and Ca++-activated ATPase (pHs 7.4 and 9.4) were studied in the larval tail musculature of Rana japonica, Rana catesbeiana and Rana ornativentris. The ATPase reaction product was detected by both light and electron microscopy. Red and white muscle fibres, as distinguished by SDH, showed high and low Ca++-ATPase reaction, respectively, at pHs 7.4, 9.4 and following preincubation in cold K2-EDTA solution. The ultrastructural investigation of CA++-ATPase reaction at pH 7.4 by the Ca++-citrophosphate technique demonstrated electron-dense reaction product in association with A, I and Z bands, intermyofibrillar (SR) compartment and the mitochondrial inner chamber. However, Pb++ precipitation technique demonstrated Mg++-activated myosin ATPase activity at pH 9.2 ultrastructurally. The present histochemical data suggest that the anuran larval tail red muscle fibres are possible slow, and emphasize a possible lack of correlation between the speed of contraction with their ATPase activity. Moreover, red muscle fibres of the anuran tail musculature are not equivalent to Type I fibres of higher chordates.  相似文献   

7.
Shoot tips of York and Vermont Spur Delicious apples (Malus domestica Borkh.) were cultured in vitro to test the influence of K+, Mg++ and gelling agent concentrations on vitrification. These concentrations were 20.05, 14.05 and 8.05 mM K+, 1.5 and 3.0 mM Mg++, 7.0 g/l Difco Bacto agar and 1.0, 1.5 and 2.0 g/l Gelrite. The lowest K+ level produced a higher percentage of vitrified shoots, affected tissue appearance, reduced shoot number and shoot elongation and apparently altered shoot metabolic activity. Gelrite consistently produced vitrified leaves and stems, even though media gelled with 1.5 g/l Gelrite presented the same apparent gel firmness as using 7 g/l Difco Bacto agar, which did not induce vitrification. Less shoot elongation, fewer total shoots, and more usable shoots of York were obtained on Bacto-agar, while similar but less noticeable effects were obtained with Vermont Spur Delicious. The results presented here show that vitrification can be studied in a standardized system in which the only change is substitution of one gelling agent for another.  相似文献   

8.
A bacterium isolated from soil and identified asAgrobacterium sp produced a water-soluble extracellular polysaccharide capable of producing highly viscous solutions. Gas chromatographic analysis revealed a sugar composition of glucose, galactose and mannose in the molar ratio of 7.52.41, together with 3.7% (w/w) pyruvic acid. Methylation analyses showed the presence of (13)-, (14)- and (16)-linked glucose, (13)- and (14, 16)-linked galactose and a small portion of (13)-linked mannose residues. Succinic acid was not present. The molecular weight of the polysaccharide was estimated by light scattering to be 2×106 Da. The viscosity of solutions containing the polysaccharide remained constant from pH 3 to 11, and decreased by 50% when heated from 5 to 55°C. Maximum yield of the polysaccharide, 20 g L–1, was reached in 48 h at 30°C incubation.  相似文献   

9.
The activities and kinetics of the enzymes G6PDH (glucose-6-phosphate dehydrogenase) and 6PGDH (6-phosphogluconate dehydrogenase) from the mesophilic cyanobacterium Synechococcus 6307 and the thermophilic cyanobacterium Synechococcus 6716 are studied in relation to temperature. In Synechococcus 6307 the apparent K m's are for G6PDH: 80M (substrate) and 20M (NADP+); for 6PGDH: 90M (substrate) and 25M (NADP+). In Synechococcus 6716 the apparent K m's are for G6PDH: 550M (substrate) and 30M (NADP+); for 6PGDH: 40M (substrate) and 10M (NADP+). None of the K m's is influenced by the growth temperature and only the K m's of G6PDH for G6P are influenced by the assay temperature in both organisms. The idea that, in general, thermophilic enzymes possess a lower affinity for their substrates and co-enzymes than mesophilic enzymes is challenged.Although ATP, ribulose-1,5-bisphosphate, NADPH and pH can all influence the activities of G6PDH and 6PGDH to a certain extent (without any difference between the mesophilic and the thermophilic strain), they cannot be responsible for the total deactivation of the enzyme activities observed in the light, thus blocking the pentose phosphate pathway.Abbreviations G6PDH glucose-6-phosphate, dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase - G6P glucose-6-phosphate - 6PG 6-phosphogluconate - RUDP ribulose-1,5-bisphosphate - Tricine N-Tris (hydroxymethyl)-methylglycine  相似文献   

10.
The isolation and characterization of glucose oxidase-negative (gox -) mutants of Phanerochaete chrysosporium, is described. These mutants are deficient not only in their ability to produce hydrogen peroxide (H2O2) but also in lignin degradation (2-14C-synthetic lignin14CO2), ligninase and peroxidase activities, decolorization of the dye poly-R 481, and production of ethylene from -oxo--methylthiobutyric acid (KTBA). The gox - mutants retained, albeit at a lower level, the capacity to produce veratryl alcohol, a typical secondary metabolite, and produced conidia at a level comparable to that of the wild type. The addition of ligninase and/or glucose oxidase to a gox - mutant (GOX-10) did not enhance its capacity to degrade lignin. The Gox+ revertant strains regained glucose oxidase activity, the ability to degrade lignin, as well as the other characteristics that were missing in the gox - mutants. The results suggest that the genetic lesion in these mutants affects the regulation of a set of secondary metabolic characteristics.Abbreviations Gox glucose oxidase - KTBA -oxo--methylthiobutyric acid Journal article no. 11740 from the Michigan Agricultural Experiment Station  相似文献   

11.
The general properties of the excitable membrane on molluscan pacemaker neurons can be described on the basis of a fair amount of experimental evidence available in the literature. The neuronal membrane exhibits under voltage clamp an initial inward current carried by both Na+ and Ca2+ ions, the time- and voltage-dependent characteristics of which are similar to that of other excitable structures. The conductance mechanism for the two ion species and the transport kinetics appear to be closely similar. The time course and amplitude of the delayed outward current carried by K+ ions shows a marked dependence on the membrane potential. Characteristic for the molluscan neurons is the existence of an additional fast transient outward current which is only activated by hyperpolarizing shifts from the membrane potential. A regular beating discharge over a wide range of frequencies can be predicted by making the assumption of a metabolically controlled driving of the Na+ conductance. Bursting pacemaker characteristics can be correctly simulated by the model if sinusoidal variations of an additional Na+ and Ca2+ conductances g Na and g Ca, and periodic variations of the K+ conductance g K, governed by the known operation of a metabolic substrate cycle are introduced. The close approximation of experimentally observed impulse bursts requires that the actual inpulse-frequency and the amplitude of the after-spike hyperpolarization are determined by the temporal pattern of g Na, while the spike amplitude is controlled by g Na which (although of similar time course) is lagging in phase behing g Na. The periodic changes in additional K+ conductance g K, are responsible for burst termination and the changes in inter-burst interval, to the effect that spike doublets, triplets and multi-spike bursts can be simulated by a suitable choice for the time characteristics of g K. The model makes use of the finding that the Ca2+ inflow associated with a spike discharge actually activates g K, so that large postburst hyperpolarizations can be obtained in high-frequency bursts.Supported by the Deutsche Forschungsgemeinschaft (Grant Ch 25/1)  相似文献   

12.
Cells of the purple non-sulphur bacterium Rhodobacter sphaeroides express a high-affinity K+ uptake system when grown in media with low K+ concentrations. Antibodies againts the catalytic KdpB protein or the whole KdpABC complex of Escherichia coli crossreact with a 70.0 kDa R. sphaeroides protein that was expressed only in cells grown in media with low K+ concentrations. In membranes derived from R. sphaeroides cells grown with low K+ concentrations (induced cells), a high ATPase activity could be detected when assayed in Tris-HCl pH 8.0 containing 1 mM MgSO4. This ATPase activity increased upon addition of 1 mM KCl from 166 to 289 mol ATP hydrolysed x min-1 x g protein-1 (1.7-fold stimulation). The K+-stimulated ATPase activity was inhibited approximately 93% by 0.5 mM vanadate but hardly by N,N-dicyclohexylcarbo-diimide (DCCD). These results indicate that the inducible K+-ATPase in R. sphaeroides resembles the Kdp K+-translocating ATPase of Escherichia coli. This Kdp-like transport system is also expressed in R. capsulatus and Rhodospirillum rubrum during growth in media with low K+ concentrations suggesting a wide distribution of this transport system among phototrophic bacteria.Abbreviations electrical potential difference across the cytoplasmic membrane - pH pH difference across the cytoplasmic membrane - BSA bovine serum albumine - PAGE polyacrylamide gel electrophoresis - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - PMSF phenyl-methyl-sulfonyl fluoride - DCCD N,N-dicyclohexylcarbodiimide - AIB 2--aminoisobutyric acid - TMG methyl--d-thiogalactopyranoside  相似文献   

13.
Summary Activation of the -adrenergic receptors of the opercular epithelium ofFundulus heteroclitus stimulates Cl secretion, while activation of the -adrenergic receptors inhibits Cl secretion (Degnan and Zadunaisky, 1979). The possible involvement of adenosine 3, 5-monophosphate (cAMP) in these adrenergic responses was investigated. Isolated opercular epithelia incubated in Ringer, containing 10 mM theophylline, had cAMP levels ranging between 5.3 and 19.3 pmoles·mg protein–1 (mean=9.5±1.0 pmoles·mg protein–1). Activation of the -receptors by 10–5 M isoproterenol increased the mean cAMP level 430% (P<0.001). Blockage of the -receptors with propranolol greatly reduced the increase in cAMP in response to isoproterenol. Activation of the -receptors by 10–5 M arterenol stimulated the mean cAMP level 270% (P<0.01). However, when the -receptors were blocked with propranolol, arterenol had no effect on the cAMP level. The possible involvement of Ca++ in these adrenergic responses was investigated. Neither the stimulatory effect of isoproterenol, nor the inhibitory effect of arterenol on the Cl secretion were diminished in the absence of extracellular Ca++. The Ca++ ionophore, A23187, and the calmodulin inhibitor, trifluoperazine, had no effects on the Cl secretion. The Ca++-channel blocker, D600, had a significant inhibitory effect (P<0.005). Guanosine 3,5-monophosphate (cGMP) had no effect on the Cl secretion.The results indicate that -adrenergic stimulation of Cl secretion across the opercular epithelium is accompanied by an elevation in tissue cAMP levels. -adrenergic inhibition of Cl secretion does not involve changes in the tissue cAMP. Neither of these responses appear to require Ca++.  相似文献   

14.
Summary The basolateral potassium conductance of cells of most epithelial cells plays an important role in the transcellular sodium transport inasmuch as the large negative equilibrium potential of potassium across this membrane contributes to the electrical driving force for Na+ across the apical membrane. In the present study, we have attempted to establish, theI-V curve of the basolateral membrane of theAmphiuma collecting tubule, a membrane shown to be K+ selective. TransepithelialI-V curves were obtained in short, isolated perfused collecting tubule segments. The shunt conductance was determined using amiloride to block the apical membrane Na+ conductance. In symmetrical solutions, the shuntI-V curve was linear (conductance: 2.2±0.3 mS·cm–2). Transcellular current was calculated by subtracting the shunt current from the transepithelial current in the absence of amiloride. Using intracellular microelectrodes, it was then possible to measure the basolateral membrane potential simultaneously with the transcellular current. The basolateral conductance was found to be voltage dependent, being activated by hyperpolarization: conductance values at –30 and –80 mV were 3.6±1.0 and 6.6±1.0 mS·cm–2, respectively. BasolateralI-V curves were thus clearly different from that predicted by the constant field model. These results indicate that the K+-selective basolateral conductance of an amphibian collecting tubule shows inward (anomalous) rectification. Considering the electrogenic nature basolateral Na–K-pump, this may account for coupling between pump-generated potential and basolateral K+ conductance.  相似文献   

15.
Summary Two heat-sensitive pawn mutants ofParamecium aurelia are capable of avoiding reactions when grown at 23°C but not at 35°C. Electrophysiological analyses show that Ca activation is reduced in the mutants even when they are grown at 23°C. The maximal rate of rise and the peak of the evoked action potential (Ca-spike) in the mutants are smaller than those of wild type in a K-solution. After suppression of K conductance by either TEA+ or Ba++, the action potentials of the mutants peak at the same level as that of wild type. However, the maximal rate of rise of the mutants remains only about half that of wild type. Thus, the mutations affect Ca activation but not K activation.Incubation at a high temperature (35°C) further reduces Ca activation to almost zero in the mutants but has little or no effect on wild type. This almost complete loss of Ca activation explains the lack of avoiding reactions when the mutants are grown at high temperatures. A double mutant containing two heat-sensitive mutations shows extremely reduced Ca activation even when grown at 23°C.  相似文献   

16.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

17.
The dynamics of coupled biological oscillators can be modeled by averaging the effects of coupling over each oscillatory cycle so that the coupling depends on the phase difference between the two oscillators and not on their specific states. Average phase difference theory claims that mode locking phenomena can be predicted by the average effects of the coupling influences. As a starting point for both empirical and theoretical investigations, Rand et al. (1988) have proposed d/dt= — K sin ), with phase-locked solutions =arcsin( /K), where is the difference between the uncoupled frequencies and K is the coupling strength. Phase-locking was evaluated in three experiments using an interlimb coordination paradigm in which a person oscillates hand-held pendulums. was controlled through length differences in the left and right pendulums. The coupled frequency c was varied by a metronome, and scaled to the eigenfrequency v of the coupled system K was assumed to vary inversely with c. The results indicate that: (1) and K contribute multiplicatively to (2) =0 or = regardless of K when =0; (3) 0 or regardless of when K is large (relative to ); (4) results (1) to (3) hold identically for both in phase and antiphase coordination. The results also indicate that the relevant frequency is c/v rather than c. Discussion high-lighted the significance of confirming =arcsin(/K) for more general treatments of phase-locking, such as circle map dynamics, and for the 11 phase-entrainment which characterizes biological movement systems.  相似文献   

18.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

19.
Summary In 17 frogs (Rana esculenta var ridibunda) immobilised with succinyl choline the optic tectal surface was stimulated by trains of electrical pulses or by a flash to the contralateral eye. Sustained potential shifts (SPSs) and changes in extracellular potassium concentration ( [K+]0) were simultaneously recorded.In response to electrical stimulation SPSs of maximal amplitudes (1.19±0.1 mV) were recorded between 50 and 200 m in depth and maximal [K+]0 (0.69 ±0.08 mM) between 100 and 350 m. The changes of SPS and [K+]0 showed a close similarity in experiments with changes in voltage, pulse duration and frequency of stimuli within a train. The induced SPS had a duration of 28±1.54 s, the [K+]0 of 32±1.23 s.The flash stimulus induced an SPS and [K+]0 of maximal amplitudes between 50 and 200 m in depth with values of 0.57±0.1 mV and 0.29±0.03 mM respectively. An additional wave with a latency of ca 1 s and a duration of ca 3 s arose on the background of the SPS to a flash stimulus, associated with an additional increase in [K+]0.It is considered that the accumulation of K+ in extra-cellular space, with neuronal activity, results in depolarization of radial processes of ependymal glia. This is reflected in the neuropil of the upper layers of the optic tectum as an SPS.We would like to dedicate this article to the memory of Alexander Roitbak who died as a result of a tragic accident while this paper was in press. He will be remembered fondly especially for his contributions to understanding of the functions of Neuroglia. E.V.O., P.R.L., T.A.R.  相似文献   

20.
Escherichia coli grown anaerobically for osmotic studies upon increased osmolarity in alkaline medium carried out H+–K+-exchange in two steps, the first of which was DCCD1 sensitive and osmo-dependent and had the 2H+/K+ stoichiometry. H+-efflux in the presence of protonophore (CCCP) upon increase of osmolarity was shown to be high and inhibited by DCCD, whereas H+-efflux induced by a decrease of osmolarity was small and not inhibited by DCCD. The 2H+/K+-exchange was absent intrkA anduncA mutants. InuncB mutant 2H+/K+-exchange was not DCCD-and osmosensitive. Competition between DCCD and osmoshock on inhibition of 2H+/K+-exchange was found. Osmosensitivity of this exchange disappeared in spheroplasts. Osmosensitivity of both 2H+/K+-exchange and the F0F1 and osmoregulation of the F0F1 via F0 and a periplasmic space are postulated.Abbreviations F0F1 H+-ATPase complex - F0 H+-channel, proteolipid - F1 H+-ATPase - Trk constitutive system for K+ uptake - PV periplasmic protein valve - DCCD N,N-dicyclohexylcarbodiimide - CCCP carbonylcyanide-m-chlorophenylhydrazone - H or K transmembrane electrochemical gradient for H+ or K+ respectively - membrane potential - upshock or downshock increase or decrease of medium osmolarity, respectively - CGSC E. coli Genetic Stock Center, Yale University, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号