首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Germination of the dark-germinating seeds of 3 varieties of tomato is controlled by the phytochrome system. Germination is inhibited by far red radiation and repromoted by red applied after far red. At low temperatures, 17 to 20°, a single, low energy far red irradiation is sufficient to inhibit germination in all 3 varieties. At higher temperatures far red is less effective in the inhibition of the germination of the tomato seeds. The phytochrome fraction present as PFR in the dark-germinating seeds of the Ace variety is about 40% of the total phytochrome present.  相似文献   

2.
Fox LR  Hillman WS 《Plant physiology》1968,43(11):1799-1804
Morphologically similar pea plants having a 4-fold difference in spectrophoto-metrically detectable phytochrome can be produced by pretreatment of etiolated plants with red light (R) or with red and far-red light combined (RF). A search for response differences which could be ascribed to differences in phytochrome content has resulted only in the establishment of differences due to de-etiolation. Segments of etiolated plants differ from those of plants de-etiolated by R and RF pretreatments in 2 ways. Segments from etiolated plants appear to respond rapidly to the far-red absorbing form of phytochrome (PFR), while segments from de-etiolated plants do not respond rapidly to PFR. This statement is based upon 2 observations: (i) the red light induced growth inhibition in segments from etiolated plants rapidly escapes reversibility by far-red light, while with segments from R or RF pretreated plants, the red light effect is fully reversed by subsequent far-red light for up to 2 hr; and (ii) segments from etiolated plants were inhibited to a greater degree than were segments from RF pretreated plants when various photostationary state levels of PFR were maintained for 30 or 90 min and then removed by photoconversion to PR. The in vivo nonphotochemical transformation curves of the phytochrome of etiolated and RF pretreated plants appear to differ in 2 related respects: (i) the amount of phytochrome destroyed in de-etiolated tissue is greater than that in etiolated tissue, perhaps as a result of the fact that (ii) the rate and extent of apparent reversion of PFR to PR in etiolated tissue is about twice that in de-etiolated tissue.  相似文献   

3.
The morphological development of Sinningia speciosa plants that were exposed to supplementary far red light was very different from that of plants receiving dark nights. After several nights of such irradiation, stems and petioles were elongated, petioles were angulated, leaf blade expansion was inhibited, plants were chlorotic and the accumulation of shoot dry weight was retarded.

Red reversibility of the morphological changes potentiated by far red light indicated control by the phytochrome system. A high PFR level during the last half of the night inhibited stem elongation and promoted leaf blade expansion, but both of these processes were hardly affected by the PFR level during the first half of the night. Thus sensitivity to PFR was cyclic.

The interpretation of our experiments was complicated by quantitative morphological differences resulting from long, as compared to short, far red irradiations.

  相似文献   

4.
Using various photostationary state light sources to obtain reproducible phytochrome conversion of from 5 to 88% PFR, assayed by 2 wavelength in vivo spectrophotometry, relationships between initial percent PFR and elongation of apical Avena coleoptile segments over the succeeding 20 hours in darkness were studied. With material grown in total darkness, all PFR levels promote elongation, and maximal promotion requires roughly 50% PFR. The promotion caused by an initial 5 minute red (88% PFR) treatment at hour 0 is partially reversible at hour 5 by sources forming less than 48% PFR, but totally irreversible at hour 8, though less than 50% of the growth has been accomplished by this time. Direct photometric assays at hour 5 indicate a phytochrome state of roughly 45% PFR, consistent with the reversal data. At hour 8, however, 11 to 22% of the phytochrome still assays as PFR, an inconsistency suggesting simply that the elongation process has proceeded beyond photochemical control. Thus, in contrast with results previously reported for Pisum and Phaseolus, there is no contradiction between photometric and physiological assays of phytochrome state in Avena coleoptile segments.

Attempts to expand this study by using segments from seedlings pretreated with red light showed that such pretreatment as little as 1 to 2 hours before drastically reduces subsequent elongation and photoresponse on the medium employed. This decline in growth potential can be halted at any time before its completion by either excision of the segment or far-red treatment of the intact seedling.

  相似文献   

5.
Briggs WR 《Plant physiology》1969,44(8):1081-1088
Irradiation of phytochrome solutions with a high-intensity mixed red and far red light source causes measurable absorbancy increases at 543 nm. Evidence is presented that these absorbancy increases are caused by accumulation of intermediates on the PR to PFR pathway with relatively slow thermal decay constants. Kinetic analysis of the decay signals is consistent with the interpretation that the signals represent simultaneous independent and parallel decay of 2 species by first order kinetics to PFR. If actinic light intensity is kept constant and exposure time changed, the relative amounts of the 2 components change, with proportionately more of the rapidly decaying species present following short exposure times. If the amount of the intermediates is decreased by decreasing actinic light intensity at constant exposure time, however, the relative amounts of the 2 remain constant. The Q10 for intermediate decay following illumination is approximately 2.0, while that for complete phototransformation of the pigment in either direction is very close to 1.0. Incomplete transformation of PR to PFR, caused by overlapping absorption of the 2 forms, is shown by the presence of intermediates (indicating cycling of the pigment) in continuous red light. Such intermediates do not appear in continuous far red, indicating a rate of pigment cycling below detection by the available instrumentation.  相似文献   

6.
Richard E. Kendrick 《Planta》1972,102(4):286-293
Summary The rate of total phytochrome decay in the dicotyledons Amaranthus caudatus, Mirabilis jalapa and Pisum sativum under continuous illumination with red, incandescent, and blue light depends on the PFR/Ptotal maintained by each source. Amaranthus is an exception to this in that there is a deviation from firstorder decay kinetics under continuous illumination with incancdescent light. This deviation is probably not related to the chlorophyll present in the Amaranthus sample since chlorophyll-rich Pisum buds have the same phytochrome decay rate as epicotyl tissue under continuous incandescent light. Reports of a prolonged lag phase before the onset of first-order decay kinetics of phytochrome in Pisum have not been confirmed and the small lag phase observed in the present work can be accounted for by the time required to attain the PFR/Ptotal ratio characteristic of blue light in a carotenoid rich tissue. In the monocotyledon, Avena sativa, and perhaps monocotyledons in general, decay rate is maximal at a low PFR concentration and the decay curve is the same under continuous red, incandescent and blue light. This dicotyledon/monocotyledon difference with respect to saturation of phytochrome decay does not correlate with the other dicotyledon/monocotyledon difference, the presence or absence of dark reverions of PFR to PR, since the dicotyledons Amaranthus and Mirabilis that lack reversion still show no saturation of decay. Possible growth control by the PFR/Ptotal ratio is discussed in relation to environmental changes in light quality.Research carried out at Brookhaven National Laboratory under the auspices of the U. S. Atomic Energy Commission.  相似文献   

7.
Internode elongation was measured in plants of Phaseolus vulgarisand Glycine max grown under 8 h photoperiods at 25 W m–2in white fluorescent light, followed by light-extensions varyingin quality, irradiance and duration. Two distinct responsesto light were observed under these conditions. A reduction in PFR/P increased elongation, but elongation wasalso modified by a second reaction in which internode lengthincreased with increase in the duration and irradiance of theday-extension. This light-promoted response occurred in bothred and blue light. In the PFR-inhibition response, light acteddirectly on the expanding internode. The light-promoted response,in contrast, required irradiation of the leaf. The response to a short end-of-day exposure to far-red lightprogressively diminished as successive internodes expanded underthe treatment, whereas the light-promoted response increased.The two processes appeared to interact and, in the later-expandinginternodes, the effect of a reduction in PFR was greater underlong day-extensions with mixed red and far-red light than inthe end-of-day treatments. 1 Present address: British Telecom, Brunel House, 2 FitzalanRoad, Cardiff, U.K.  相似文献   

8.
Briggs WR 《Plant physiology》1969,44(8):1089-1094
Conditions of illumination which cause phytochrome to cycle rapidly from PR to PFR and back lead to the accumulation in vivo of detectable amounts of long-lived intermediates on the PR to PFR pathway in oat coleoptile tissue. They appear to decay independently and in parallel to PFR. Their behavior under different intensities of illumination and exposure time suggests that they are homologous with 2 similar intermediates previously observed in vitro. Available evidence favoring this suggestion is discussed. Equivalent illumination apparently causes far higher steady state levels of absorption by intermediates in vivo than in vitro, suggestion that native phytochrome is in a different physical state in the cell than it is in solution. A difference spectrum for the intermediates in vitro between 365 and 580 nm is presented. It has a maximum at 380 nm, a minimum at 418 nm, and crossover points at 398 and 485 nm. Glycerol in the phytochrome sample enhances the signal without otherwise changing the spectrum in any way. The difference spectrum represents the difference in absorption between the combined intermediates and PFR.  相似文献   

9.
The phytochrome-dependent germination of spores was studiedin the fern Pteris vittata. Brief irradiations with red lightgiven at 0 and 25?C resulted in very similar germination rates.Irradiation with far-red light cancelled this promotive effect,irrespective of the temperature at which tested. The maximumrate of germination was induced by red light of ca. 70Jm–2and half of the rate was induced by ca. 15Jm–2 When sporesimbibed in the dark were kept for 1 h at 0 or 25?C under irradiationswith monochromatic lights from 660 to 730 nm at 10 nm intervals,spore germination was induced depending upon the establishedphotostationary states of phytochrome at both temperatures tested.The percent of PFR estimated in spores that had been irradiatedbriefly with red light was consistent with that resulted fromphotostationary states under different monochromatic lightsin terms of the percent of germination of a spore population.The threshold of the % PFR required for the germination of eachspore ranged widely from a few percent to 80% of the PFR. Thisdiversity may vary the timing of germination in nature. 1 Partial preliminary results of this research were introducedin a review by M.F. (1978). 3 Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Setagaya, Tokyo 158, Japan. (Received May 15, 1982; Accepted August 5, 1982)  相似文献   

10.
Pretreatment of etiolated pea plants with red light and with red combined with far-red light produced morphologically similar plants having 4-fold differences in spectrophotometrically detectable phytochrome. Stem segments from the variously pretreated plants respond in the same way to different percentage conversions of phytochrome to PFR. These results suggest that the PFR./PR ratio, rather than the concentration of PFR, governs pea stem segment elongation. However, the ratio hypothesis does not explain contradictions between spectrophotometric and physiological assays previously obtained with this tissue, nor does it explain similar contradictions obtained in other systems. The only hypothesis consistent with the data to date is that of the existence of bulk and active phytochrome fractions, with the latter present in insufficient quantities to be spectrophotometrically detectable.  相似文献   

11.
Leaves of spinach (Spinacia oleracea, cv. Ispolinskii) were preilluminated by low-intensity light (1.0 and 1.5 W/m2, 0.5?C3.0 h) with wavelengths ranging from 530 to 730 nm to study the effect of this pretreatment on the activity of photosystem II (PS II), content of photosynthetic pigments, and peroxidase activity in excised leaves exposed to UV-A irradiation. Irradiation of leaves with UV-A suppressed the activity of PS II, reduced the content of chlorophylls (a + b) and carotenoids, and increased the peroxidase activity. Preillumination of leaves with red light (RL, 620?C660 nm) alleviated the inhibitory action of UV-A on PS II activity and reduced the pigment losses but increased the peroxidase activity in leaves and thylakoid membrane preparations, as compared to the respective effects of UV-A light applied without preillumination. The preexposure of leaves to red light alternating with far-red light (FR, 730 nm) removed partly the influence of RL on the parameters under study, which indicates the involvement of phytochrome active form, PFR into stress-induced defense responses in leaves. It is supposed that elevated resistance of photosynthetic apparatus to UV-A radiation was formed with the involvement of PFR and the antioxidant system induced by oxidative stress after preillumination of leaves with red light  相似文献   

12.
When Sinningia plants were grown with fluorescent light of photosynthetic intensity for 8 hours each day, stems became abnormally elongated when the PFR level was lowered by far red light given during the last half of several consecutive nights. However, plants were even taller if the source also emitted red light. Elongation was independent of the red/far red energy ratio if it was lower than one, but dependent upon irradiance at all values tested.

Elongation of plants irradiated by a well filtered far red source was presumed to be limited by a shortage of respiratory substrate. Enhancement by radiation shorter than 700 mμ was attributed to promotion of processes leading to increased substrate supply. Protochlorophyllide was regarded as the primary photoreceptor. Its photoreduction promoted chlorophyll synthesis which, in turn, increased photosynthetic capacity and thus substrate supply.

  相似文献   

13.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

14.
Germination of tomato seeds exposed to a single, saturating irradiation from light sources of different spectral energy distribution seems to be dependent upon the photostationary PFR/PR ratio established by the irradiation. Germination of tomato seeds exposed to prolonged irradiations from the same light sources does not seem to be controlled solely by the PFR/PR ratio induced and maintained by the irradiation.  相似文献   

15.
The effects of irradiations with different proportions of red/farred light and of gibberellic acid on the phytochrome-mediated seed germination of Kalanchoë blossfeldiana cv. Feuerblüte, were studied. The seed coat transmits much more red than far-red light, and therefore the energy ratio between 660 nm and 730 nm is given only for the transmitted light. Decreasing this ratio from 65 to 1.0 caused only a very slight inhibition. If this ratio is further lowered to 0.64, a 10 min terminal irradiation after a 3-h white light photoperiod is inhibitory, but a 12-h photoperiod or continuous irradiation is not. If the ratio is decreased to 0.44 or 0.31, a 12-h photoperiod is now also inhibitory, although continuous irradiation and 10 min terminal irradiation are still more inhibitory. These results are discussed in terms of phytochrome phototransformations. Although gibberellic acid is unable to cause any germination in complete darkness, it can result in a very high germination percentage, if combined with treatments which by themselves do not induce any germination such as continuous far-red, terminal far-red after short photoperiods, or very short photoperiods at 25°C. These results point to a strong synergism between gibberellic acid and the so-called stabilized form of phytochrome, P*FR.  相似文献   

16.
Phototransformation of the red-light-absorbing form (PR) tothe far-red-light-absorbing form (PFR) of phytochrome in 7-day-oldetiolated pea epicotyl hook segments was examined at 0.5C aftera red laser flash excitation using a multichannel transientspectra analyser with electrically gated photomultiplier. Effectsof a red laser pulse on the induction of phototransformationfrom PR to PFR were saturated at Ca. 15 mJ for flash wavelengthsof both 640 and 655 nm. The amount of PFR induced by a saturatinglaser pulse was ca. 50% of that obtained at the photostationaryequilibrium. A difference spectrum measured 15 µs afterthe flash showed an absorbance increase at 697 nm and a decreaseat 663 nm. A difference spectrum determined 200 ms after theflash showed no such major absorbance increase. Kinetic analysisof the rapid absorbance decrease at 700 and 710 nm gave onesimple first-order reaction component having a rate constantof 2,500 s–1. Kinetics of PFR appearance measured by absorbanceincrease at 750 nm was resolved into three first-order reactionshaving rate constants of 5, 1.8 and 0.4 s–1. The secondflash light of 710 nm given 2 µs and 2 ms after the firstred flash irradiation on PR resulted in the formation of PRrather than PFR. (Received February 8, 1985; Accepted April 11, 1985)  相似文献   

17.
Control of senescence in marchantia by phytochrome   总被引:1,自引:1,他引:0       下载免费PDF全文
Mature green tissue of Marchantia polymorpha L. bleaches markedly when placed in continuous darkness for 4 days but remains green when given daily 1-hour photoperiods of white light. The tissue, however, is induced to bleach when each daily 1-hour photoperiod is terminated with a brief irradiation with far red light. The bleaching does not occur when each irradiation with far red light is followed by a brief irradiation with red light. The bleaching is taken as an index of senescence since the loss of chlorophyll in the bleached tissue is accompanied by a breakdown of cell organelles and cytoplasm. Phytochrome is clearly implicated in the control of senescence by light. It was also found that 5 minutes of red light given once a day was as effective as the 1-hour photoperiods with white light in preventing the bleaching and that bleaching was induced when each daily 5-minute irradiation with red light was followed by a 10-minute irradiation with far red light.  相似文献   

18.
Dennis Gwynn  Joseph Scheibe 《Planta》1972,106(3):247-257
Summary Using a 2-h irradiation period at constant quantum irradiance, a complete action spectrum for inhibition of germination of lettuce seed has been obtained. Action maxima were near 470 and 720 nm, the latter being the most active wavelength. It was also shown, under conditions where light inhibition cannot occur, that phytochrome potentiation of germination is maximal at all wavelengths below 700 nm, including the highly active blue region. Evidence was presented for promotion of germination by a 2-h irradiation in the red which cannot be explained on the basis of conversion of phytochrome to the active form.Abbreviations Bl blue - FR far-red, PFR far-red-absorbing form of phytochrome - R red Supported in part by funds provided for biological and medical research by the State of Washington Initiative Measure No. 171 and the Graduate School Research Funds.  相似文献   

19.
Dark germination of Amaranthus retroflexus L. seeds at 35° increased after several days of prechilling at 20° or lower. Irradiation with far-red light for short periods during the early hours of a prechilling period at 10° inhibited subsequent dark germination at 35°. The inhibition was completely reversible with red light. Far-red irradiation in the latter part of the prechilling period was less effective. Increased dark germination of A. retroflexus seeds following a prechilling period at 20° or less is attributed to action of preexistent PFR, the far-red absorbing form of phytochrome, within the seeds. Inactivation of PFR was found to proceed ca. 4 times more rapidly at 25° than at 20°. Failure of imbibition temperatures above 20° to increase dark germination of A. retroflexus seeds is attributed to the rapid thermal reversion of pre-existent PFR. We suggest that the action of prechilling (layering) on many other seed kinds arises in a similar way.  相似文献   

20.
In etiolated seedlings of Raphanus sativus L. the inhibition of hypocotyl elongation by continuous light showed a major bimodal peak of action in the red and far-red, and two minor peaks in the blue regions of the spectrum. It is argued that, under conditions of prolonged irradiation, phytochrome is the pigment controlling the inhibition of hypocotyl elongation by red and far-red light, but that its mode of action in far-red is different from that in red. A distinct pigment is postulated for blue light.Abbreviations B blue - FR far red - G green - R red - HIR high irradiance reaction - Pr and Pfr red and far red absorbing forms of phytochrome - R red  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号