首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. To investigate the evolution of young Alu elements it is critical to have access to complete subfamilies, which, following the release of the final human genome assembly, can now be obtained using in silico methods.  相似文献   

2.
Reconstruction and analysis of human alu genes   总被引:39,自引:0,他引:39  
  相似文献   

3.
The Alu family of intersperesed repeats is comprised of ovr 500,000 members which may be divided into discrete subfamilies based upon mutations held in common between members. Distinct subfamilies of Alu sequences have amplified within the human genome in recent evolutionary history. Several individual Alu family members have amplified so recently in human evolution that they are variable as to presence and absence at specific loci within different human populations. Here, we report on the distribution of six polymorphic Alu insetions in a survey of 563 individuals from 14 human population groups across several continents. Our results indicate that these polymorphic Alu insertions probably have an African origin and that there is a much smaller amount of genetic variation between European populations than that found between other populations groups. Present address: Department of Pathology, Stanley S. Scott Cancer Center, Louisiana State University Medical Center, 1901 Perdido St., New Orleans, LA 70112 Correspondence to: M.A. Batzer  相似文献   

4.
Repetitive elements are distributed non-randomly in the human genome but, as reviewed in this paper, biological processes underlying the observed patterns appear to be complex and remain relatively obscure. Recent findings indicate that chromosomal distribution of Alu retroelements deposited in the past is different from the distribution of Alu elements that continue to be inserted in human population. These active elements from AluY sub(sub)families are the major focus of this paper. In particular, we analyzed chromosomal proportions of 19 AluY subfamilies, of which nine are reported for the first time in this paper. These 19 subfamilies contain over 80% of Alu elements that are polymorphic in the human genome. The chromosomal density of these most recent Alu insertions is around three times higher on chromosome Y than on chromosome X and over two times higher than the average density for all human autosomes. Based on this observation and other data we propose that active Alu elements are passed through paternal germlines. There is also some evidence that a small fraction of active Alu elements from less abundant subfamilies can be retroposed in female germlines or in the early embryos. Finally, we propose that the origin of Alu subfamilies in human populations may be related to evolution of chromosome Y.  相似文献   

5.
6.
A recently identified Alu element (Leeflang et al. J. Mol. Evol. 1993, 37:559–565), referred to as the putative founder of the HS (PV) subfamily, was found to be present at orthologous loci in the human, chimpanzee, gorilla, and gibbon lineages. The evolution of this Alu suggested that it is a source gene in the evolution of Alu family repeats for one of the most recent subfamilies, HS. We have determined that this putative founder of the HS subfamily was not present at the orthologous loci in older primates, including old world and new world monkeys. Thus, this particular Alu locus has only been responsible for the establishment of a very small subfamily of Alu sequences. We have further demonstrated that this putative founder Alu was not responsible for the de novo Alu insertion into the neurofibromatosis-1 gene of an individual causing neurofibromatosis. Our data demonstrate that although the putative founder of the HS subfamily found by Leeflang et al. (1993) probably gave rise to one of the most recent subfamilies of Alu sequences, it has not been very active in retroposition. Correspondence to: T.H. Shaikh  相似文献   

7.
8.
9.
Alu elements are a class of repetitive DNA sequences found throughout the human genome that are thought to be duplicated via an RNA intermediate in a process termed retroposition. Recently inserted Alu elements are closely related, suggesting that they are derived from a single source gene or closely related source genes. Analysis of the type III collagen gene (COL3A1) revealed a polymorphic Alu insertion in intron 8 of the gene. The Alu insertion in the COL3A1 gene had a high degree of nucleotide identity to the Sb family of Alu elements, a family of older Alu elements. The Alu sequence was less similar to the consensus sequence for the PV or Sb2 subfamilies, subfamilies of recently inserted Alu elements. These data support the observations that at least three source genes are active in the human genome, one of which is distinct from the PV and Sb2 subfamilies and predates either of these two subfamilies. Appearance of the Alu insertion in different ethnic populations suggests that the insertion may have occurred in the last 100,000 years. This Alu insert should be a useful marker for population studies and for marking COL3A1 alleles.  相似文献   

10.
Summary Comparative analysis of the available 3′-portions of the human L1 (LINE-1) family of repeated sequences indicates that all the sequences can be classified in two major subfamilies. The division is based on patterns of diagnostic bases shared within L1 subfamilies of sequences but differing between them. The overall ratio of replacement to synonymous positions, occupied by the diagnostic bases in the large open reading frame of the L1 sequence, is 1.15. This indicates that both subfamilies were obtained from genes coding for functional proteins. The L1 subfamilies appear to be of different ages and may represent a “fossil record” of the same active gene at different times in the history of primates. The younger subfamily can be split further into at least two closely related branches of sequences. The above facts combined with the recent data for the Alu subfamily structure show that LINE and SINE families of interspersed repeats share discontinuous patterns in their evolution. These data are consistent with the model that both Alu and L1 families, as well as other pseudogene families, contain active genes producing discrete layers of pseudogenes throughout the history of primates. Models of evolutionary processes that could generate these discontinuities are discussed together with the possible biological role of Alu and L1 genes.  相似文献   

11.
Alu elements have inserted in the human genome throughout primate evolution. A small number of Alu insertions have occurred after the divergence of humans from nonhuman primates and therefore should not be present in nonhuman primate genomes. Most of these recently integrated Alu elements are contained with a series of discrete Alu subfamilies that are related to each other based upon diagnostic nucleotide substitutions. We have extracted members of the Alu Yd subfamily that are derivatives of the Alu Y subfamily that share a common 12-bp deletion that defines the Yd lineage from the draft sequence of the human genome. Analysis of the Yd Alu elements resulted in the recovery of two new Alu subfamilies, Yd3 and Yd6, which contain a total of 295 members (198 Yd3 and 97 Yd6). DNA sequence analysis of each of the Alu Yd subfamilies yielded age estimates of 8.02 and 1.20 million years old for the Alu Yd3 and Yd6 subfamilies, respectively. Two hundred Alu Yd3 and Yd6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and associated levels of human genomic diversity. The Alu Yd3 subfamily appears to have started amplifying relatively early in primate evolution and continued propagating albeit at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Only two of the elements are polymorphic in the human genome and absent from the genomes of nonhuman primates. By contrast all of the members of the Alu Yd6 subfamily are restricted to the human genome, with 12% of the elements representing insertion polymorphisms in human populations. A single Alu Yd6 locus contained an independent parallel forward insertion of a paralogous Alu Sq sequence in the owl monkey. These Alu subfamilies are a source of genomic fossil relics for the study of primate phylogenetics and human population genetics.  相似文献   

12.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolution. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome. However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.  相似文献   

13.

Background  

Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. In this study, subfamilies falling on the AluYi and AluYh lineages, and the AluYg6 subfamily, are assessed for the presence of secondary source genes, and the influence of gene conversion on the AluYh and AluYi lineages is also described.  相似文献   

14.
Summary There are several hundred thousand members of the Alu repeat family in the human genome. Those Alu elements sequenced to date appear to fit into subfamilies. A novel Alu has been found in an intron of the human CAD gene: it appears to be due to rearrangement between Alu repeats belonging to two different subfamilies. Further sequence data from this intron suggest that the Alu element may have rearranged prior to its entry into the CAD gene. Such findings indicate that, in addition to single nucleotide substitutions and deletions, DNA rearrangments may be a factor in generating the diversity of Alu repeats found in primate genomes.  相似文献   

15.
Evolution of secondary structure in the family of 7SL-like RNAs   总被引:8,自引:0,他引:8  
Primate and rodent genomes are populated with hundreds of thousands copies of Alu and B1 elements dispersed by retroposition, i.e., by genomic reintegration of their reverse transcribed RNAs. These, as well as primate BC200 and rodent 4.5S RNAs, are ancestrally related to the terminal portions of 7SL RNA sequence. The secondary structure of 7SL RNA (an integral component of the signal recognition particle) is conserved from prokaryotes to distant eukaryotic species. Yet only in primates and rodents did this molecule give rise to retroposing Alu and B1 RNAs and to apparently functional BC200 and 4.5S RNAs. To understand this transition and the underlying molecular events, we examined, by comparative analysis, the evolution of RNA structure in this family of molecules derived from 7SL RNA.RNA sequences of different simian (mostly human) and prosimian Alu subfamilies as well as rodent B1 repeats were derived from their genomic consensus sequences taken from the literature and our unpublished results (prosimian and New World Monkey). RNA secondary structures were determined by enzymatic studies (new data on 4.5S RNA are presented) and/or energy minimization analyses followed by phylogenetic comparison. Although, with the exception of 4.5S RNA, all 7SL-derived RNA species maintain the cruciform structure of their progenitor, the details of 7SL RNA folding domains are modified to a different extent in various RNA groups. Novel motifs found in retropositionally active RNAs are conserved among Alu and B1 subfamilies in different genomes. In RNAs that do not proliferate by retroposition these motifs are modified further. This indicates structural adaptation of 7SL-like RNA molecules to novel functions, presumably mediated by specific interactions with proteins; these functions were either useful for the host or served the selfish propagation of RNA templates within the host genome.Abbreviations FAM fossil Alu element - FLAM free left Alu monomer - FRAM free right Alu monomer - L-Alu left Alu subunit - R-Alu right Alu subunit Correspondence to: D. LabudaDedicated to Dr. Robert Cedergren on the occasion of his 25th anniversary at the University of Montreal  相似文献   

16.
The human NRAMP1 gene located on Chromosome (Chr) region 2q35 is a candidate gene for increased risk of infection by several intracellular macrophage parasites, including M. tuberculosis and M. leprae. In search for a possible mutational hot spot, we have analyzed a 3.5-kb region 5′ to NRAMP1 that is highly enriched for DNA repeat sequences. The repeat sequences could be grouped into one Mer element and six Alu elements, representing five Alu subfamilies, that had integrated in the same DNA region during successive rounds of Alu retropositional activity. Comparative sequence analysis of the Alu cluster region in humans, chimpanzee (Pan paniscus), and gorilla (Gorilla gorilla) revealed only modest sequence variability and failed to detect any evidence for genomic instability of the highly repetitive DNA region. These results show that sequence length variants in the Alu-flanking regions as well as nucleotide substitutions are the most common genomic variations even in a region of extreme Alu-clustering. Moreover, the high degree of sequence conservation among three primate species argues against the Alu cluster being the site of frequent genomic rearrangements or other frequent genetic events that might influence NRAMP1 expression. Received: 20 September 1997 / Accepted: 23 January 1998  相似文献   

17.
Alu elements sharing sequence characteristics of the old subfamilies are thought to currently be retrotranspositionally inactive. We analyzed one of these old subfamilies of Alu elements, Sx, for sequence conservation relative to the consensus and the length of the A-tail as parameters to define the presence of potential Alu Sx source genes in the human genome. Sequence identity to the left half or the right half of the Alu Sx consensus sequence was evaluated for 4424 complete elements obtained from the human genome draft sequence. A small subset of Alu Sx left halves were found to be more conserved than any of the Alu Sx right halves. Selection for promoter function in active elements may explain the slightly higher conservation of the left half. In order to determine whether this sequence identity was the result of recent activity, or simply sequence conservation for older elements, PCR amplification of some of the loci containing Sx elements with conserved left/right halves from different primate genomes was carried out. Several of these Sx Alus were found to have amplified at a later evolutionary period (<35 mya) than expected based on previous studies of Sx elements. Analysis of A-tail length, a feature correlated with current retroposition activity, varied between Alu Sx element loci in different primates, where the length increased in specific Alu elements in the human genome. The presence of few conserved Alu Sx elements and the dynamic expansion/contraction of the A-tail suggests that some of these older subfamilies may still be active at very low levels or in a few individuals. Present address: (Claudina Alemán Stevenson) Laboratory of Cell Biology, NCI/NIH Building 37/Rm 1A09, Bethesda, MD 20892, USA  相似文献   

18.
Evolution of the master Alu gene(s)   总被引:34,自引:0,他引:34  
Summary A comparison of Alu sequences that comprise more recently amplified Alu subfamilies was made. There are 18 individual diagnostic mutations associated with the different subfamilies. This analysis confirmed that the formation of each subfamily can be explained by the sequential accumulation of mutations relative to the previous subfamily. Polymerase chain reaction amplification of orthologous loci in several primate species allowed us to determine the time of insertion of Alu sequences in individual loci. These data suggest that the vast majority of Alu elements amplified at any given time comprised a single Alu subfamily. We find that, although the individual divergence relative to a consensus sequence correlate reasonably well with sequence age, the diagnostic mutations are a more accurate measure of the age of any individual Alu family member. Our data are consistent with a model in which all Alu family members have been made from a single master gene or from a series of sequential master genes. This master gene(s) accumulated diagnostic base changes, resulting in the amplification of different subfamilies from the master gene at different times in primate evolution. The changes in the master gene(s) probably occurred individually, but their appearance is clearly punctuated. Ten of them have occurred within an 15-million-year time span, 40–25 million years ago, and 8 changes have occurred within the last 5 million years. Surprisingly, no changes appeared in the 20 milion years separating these periods.  相似文献   

19.
In primate genomes more than 40% of CpG islands are found within repetitive elements. With more than one million copies in the human genome, the Alu family of retrotransposons represents the most successful short interspersed element (SINE) in primates and CpG dinucleotides make up about 20% of Alu sequences. It is generally thought that CpG dinucleotides mutate approximately ten times faster than other dinucleotides due to cytosine methylation and the subsequent deamination and conversion of C-->T. However, the disparity of Alu subfamily age estimations based upon CpG or non-CpG substitution density indicates a more complex relationship between CpG and non-CpG substitutions within the Alu elements. Here we report an analysis of the mutation patterns for 5296 Alu elements comprising 20 subfamilies. Our results indicate a relatively constant CpG versus non-CpG substitution ratio of approximately 6 for the young (AluY) and intermediate (AluS) Alu subfamilies. However, a more complex non-linear relationship between CpG and non-CpG substitutions was observed when old (AluJ) subfamilies were included in the analysis. These patterns may be the result of the slowdown of the neutral mutation rate during primate evolution and/or an increase in the CpG mutation rate as the consequence of increased DNA methylation in response to a burst of retrotransposition activity approximately 35 million years ago.  相似文献   

20.
The Alu Ya-lineage is a group of related, short interspersed elements (SINEs) found in primates. This lineage includes subfamilies Ya1-Ya5, Ya5a2 and others. Some of these subfamilies are still actively mobilizing in the human genome. We have analyzed 2482 elements that reside in the human genome draft sequence and focused our analyses on the 2318 human autosomal Ya Alu elements. A total of 1470 autosomal loci were subjected to polymerase chain reaction (PCR)-based assays that allow analysis of individual Ya-lineage Alu elements. About 22% (313/1452) of the Ya-lineage Alu elements were polymorphic for the insertion presence on human autosomes. Less than 0.01% (5/1452) of the Ya-lineage loci analyzed displayed insertions in orthologous loci in non-human primate genomes. DNA sequence analysis of the orthologous inserts showed that the orthologous loci contained older pre-existing Y, Sc or Sq Alu subfamily elements that were the result of parallel forward insertions or involved in gene conversion events in the human lineage. This study is the largest analysis of a group of "young", evolutionarily related human subfamilies. The size, evolutionary age and variable allele insertion frequencies of several of these subfamilies makes members of the Ya-lineage useful tools for human population studies and primate phylogenetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号