首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Chondroitin sulfate proteoglycans (CSPGs) abnormally accumulate in cerebrospinal fluid (CSF) of both human neonates with preterm hydrocephalus, and P8 hydrocephalic mice. We hypothesized CSF CSPGs are synthesized by neural precursors, separated from ventricular CSF by ependyma, which is often disrupted in hydrocephalus. Western blotting demonstrates that neural precursors cultured as neurospheres secrete CSPGs (> 30 microg/ml) into their media which appear to be very similar to these CSF CSPGs. Some CSPGs bear the stage-specific embryonic antigen-1 (ssea-1), associated with embryonic/neural stem cells. Neurospheres transcribe many CSPG genes, including the entire aggrecan/lectican family, phosphacan, and tenascin. Phosphacan can be detected in media by Western blotting. Aggrecan can be detected in media after purification using hyaluronic acid affinity chromatography. During differentiation, neurospheres downregulate CSPGs. This is the first report to show that proliferating neural precursors synthesize lecticans, including aggrecan, which are downregulated with differentiation. These observations suggest novel links between CSPGs and CNS precursor biology.  相似文献   

2.
Protein tyrosine nitration--functional alteration or just a biomarker?   总被引:1,自引:0,他引:1  
Protein 3-nitrotyrosine is a posttranslational modification found in many pathological conditions from acute to chronic diseases. Could 3-nitrotyrosine formation participate on the basis of these diseases or is it just a marker connected with the associated nitroxidative stress? In vitro and in vivo data, including proteomic research, show that protein tyrosine nitration is a selective process where only a small amount of proteins is found nitrated and one or a few tyrosine residues are modified in each. Accumulating data suggest a strong link between protein 3-nitrotyrosine and the mechanism involved in disease development. In this review, we analyze the factors determining protein 3-nitrotyrosine formation, the functional and biological outcome associated with protein tyrosine nitration, and the fate of the nitrated proteins.  相似文献   

3.
Peroxynitrite is a reactive cytotoxic species, capable of nitrating tyrosine residues to form 3-nitrotyrosine. Little is known about the formation and loss of nitrated proteins in vivo. We have measured nitrated proteins, by enzyme-linked immunosorbent assay, in rat skin after exposure to peroxynitrite. Peroxynitrite (100-200 nmol site(-1)) was injected into the skin of anesthetized rats. At the highest dose 78.6 +/- 9.5 pmol mg(-1) protein of nitrated BSA equivalents were measured at 4 h and a significant increase was observed for 24 h after administration in skin samples. The loss of nitrated proteins from skin appeared biphasic with an initial (t(1/2) = 2 h) and slower loss (t(1/2) = 22 h). A major nitrated protein was identified as albumin by Western blot analysis. The data demonstrate that a single exposure to peroxynitrite can lead to the presence of nitrated proteins in skin for at least 24 h. The sustained presence of nitrated proteins may influence the inflammatory process in skin disease.  相似文献   

4.
Protein 3-nitrotyrosine is a post-translational modification that commonly arises from the nitration of tyrosine residues. This modification has been detected under a wide range of pathological conditions and has been shown to alter protein function. Whether 3-nitrotyrosine is important in normal cellular processes or is likely to affect specific biological pathways remains unclear. Using GPS-YNO2, a recently described 3-nitrotyrosine prediction algorithm, a set of predictions for nitrated residues in the human proteome was generated. In total, 9.27 per cent of the proteome was predicted to be nitratable (27 922/301 091). By matching the predictions against a set of curated and experimentally validated 3-nitrotyrosine sites in human proteins, it was found that GPS-YNO2 is able to predict 73.1 per cent (404/553) of these sites. Furthermore, of these sites, 42 have been shown to be nitrated endogenously, with 85.7 per cent (36/42) of these predicted to be nitrated. This demonstrates the feasibility of using the predicted dataset for a whole proteome analysis. A comprehensive bioinformatics analysis was subsequently performed on predicted and all experimentally validated nitrated tyrosine. This found mild but specific biophysical constraints that affect the susceptibility of tyrosine to nitration, and these may play a role in increasing the likelihood of 3-nitrotyrosine to affect processes, including phosphorylation and DNA binding. Furthermore, examining the evolutionary conservation of predicted 3-nitrotyrosine showed that, relative to non-nitrated tyrosine residues, 3-nitrotyrosine residues are generally less conserved. This suggests that, at least in the majority of cases, 3-nitrotyrosine is likely to have a deleterious effect on protein function and less likely to be important in normal cellular function.  相似文献   

5.
Mitochondria are the primary locus for the generation of reactive nitrogen species including peroxynitrite and subsequent protein tyrosine nitration. Protein tyrosine nitration may have important functional and biological consequences such as alteration of enzyme catalytic activity. In the present study, mouse liver mitochondria were incubated with peroxynitrite, and the mitochondrial proteins were separated by 1D and 2D gel electrophoresis. Nitrotyrosinylated proteins were detected with an anti-nitrotyrosine antibody. One of the major proteins nitrated by peroxynitrite was carbamoyl phosphate synthetase 1 (CPS1) as identified by LC-MS protein analysis and Western blotting. The band intensity of nitration normalized to CPS1 was increased in a peroxynitrite concentration-dependent manner. In addition, CPS1 activity was decreased by treatment with peroxynitrite in a peroxynitrite concentration- and time-dependent manner. The decreased CPS1 activity was not recovered by treatment with reduced glutathione, suggesting that the decrease of the CPS1 activity is due to tyrosine nitration rather than cysteine oxidation. LC-MS analysis of in-gel digested samples, and a Popitam-based modification search located 5 out of 36 tyrosine residues in CPS1 that were nitrated. Taken together with previous findings regarding CPS1 structure and function, homology modeling of mouse CPS1 suggested that nitration at Y1450 in an α-helix of allosteric domain prevents activation of CPS1 by its activator, N-acetyl-l-glutamate. In conclusion, this study demonstrated the tyrosine nitration of CPS1 by peroxynitrite and its functional consequence. Since CPS1 is responsible for ammonia removal in the urea cycle, nitration of CPS1 with attenuated function might be involved in some diseases and drug-induced toxicities associated with mitochondrial dysfunction.  相似文献   

6.
Protein and lipid nitration: role in redox signaling and injury   总被引:1,自引:0,他引:1  
Protein and lipid nitration represent novel footprints of oxidative and nitrative stress processes. In this review, we first discuss the mechanisms of formation of protein 3-nitrotyrosine and nitrated fatty acids as well as their key biological and signaling actions. Elevation of protein 3-nitrotyrosine levels is associated to tissue injury, and some specific nitrated proteins play a causative role in disease progression; on the other hand, the substantiation on the role of tyrosine nitration on redox signaling is rather scarce. Herein, we also provide evidence to support that the nitration of lipids (i.e. to nitrofatty acids) results in the formation of novel endogenous modulators of redox processes, partially counteracting pro-inflammatory effects of oxidant exposure.  相似文献   

7.
The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in hyperoxaluric condition has been proved experimentally. This may result in the formation of the cytotoxic metabolite peroxynitrite, which is capable of causing lipid peroxidation and protein modification. The presence of nitrotyrosine in proteins has been associated with several pathological conditions. The present study investigated the presence of nitrotyrosine in the stone formers Tamm-Horsfall glycoprotein (THP). In vitro nitration of control THP was carried out using peroxynitrite. New Zealand white rabbits were immunized with peroxynitrated THP at 15-day intervals. Antisera collected following the third immunization were assayed for antibody titres using solid-phase ELISA. Antibodies were purified by affinity chromatography. The carbonyl content of control, stone formers and nitrated THP were determined. Western blotting was carried with control, stone formers and nitrated THPs. Immunodiffusion studies demonstrated cross-reaction with nitrated bovine serum albumin. Significant amounts (p < 0.001) of carbonyl content were present in both stone formers and nitrated THPs. Western blot analysis confirmed the presence of nitrated amino acid 3-nitrotyrosine in stone formers, which could bring about structural and functional modifications of THP in hyperoxaluric patients. A cross-reaction with nitrated bovine serum albumin confirms that the raised antibody has certain paratopes similar to the epitope of nitrated protein molecules. Detection of 3-nitrotyrosine in stone formers THP indicates that it is one of the key factors influencing the conversion of THP to a structurally and immunologically altered form during calcium oxalate stone formation.  相似文献   

8.
Abstract

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in hyperoxaluric condition has been proved experimentally. This may result in the formation of the cytotoxic metabolite peroxynitrite, which is capable of causing lipid peroxidation and protein modification. The presence of nitrotyrosine in proteins has been associated with several pathological conditions. The present study investigated the presence of nitrotyrosine in the stone formers Tamm–Horsfall glycoprotein (THP). In vitro nitration of control THP was carried out using peroxynitrite. New Zealand white rabbits were immunized with peroxynitrated THP at 15-day intervals. Antisera collected following the third immunization were assayed for antibody titres using solid-phase ELISA. Antibodies were purified by affinity chromatography. The carbonyl content of control, stone formers and nitrated THP were determined. Western blotting was carried with control, stone formers and nitrated THPs. Immunodiffusion studies demonstrated cross-reaction with nitrated bovine serum albumin. Significant amounts (p<0.001) of carbonyl content were present in both stone formers and nitrated THPs. Western blot analysis confirmed the presence of nitrated amino acid 3-nitrotyrosine in stone formers, which could bring about structural and functional modifications of THP in hyperoxaluric patients. A cross-reaction with nitrated bovine serum albumin confirms that the raised antibody has certain paratopes similar to the epitope of nitrated protein molecules. Detection of 3-nitrotyrosine in stone formers THP indicates that it is one of the key factors influencing the conversion of THP to a structurally and immunologically altered form during calcium oxalate stone formation.  相似文献   

9.
Factors determining the selectivity of protein tyrosine nitration.   总被引:9,自引:0,他引:9  
Tyrosine nitration is a covalent posttranslational protein modification derived from the reaction of proteins with nitrating agents. Protein nitration appears to be a selective process since not all tyrosine residues in proteins or all proteins are nitrated in vivo. To investigate factors that may determine the biological selectivity of protein tyrosine nitration, we developed an in vitro model consisting of three proteins with similar size but different three-dimensional structure and tyrosine content. Exposure of ribonuclease A to putative in vivo nitrating agents revealed preferential nitration of tyrosine residue Y(115). Tyrosine residue Y(23) and to a lesser extent residue Y(20) were preferentially nitrated in lysozyme, whereas tyrosine Y(102) was the only residue modified by nitration in phospholipase A(2). Tyrosine Y(115) was the residue modified by nitration after exposure of ribonuclease A to different nitrating agents: chemically synthesized peroxynitrite, nitric oxide, and superoxide generated by SIN-1 or myeloperoxidase (MPO)/H(2)O(2) plus nitrite (NO(-2)) in the presence of bicarbonate/CO(2). The nature of the nitrating agent determined in part the protein that would be predominantly modified by nitration in a mixture of all three proteins. Ribonuclease A was preferentially nitrated upon exposure to MPO/H(2)O(2)/NO(-2), whereas phospholipase A(2) was the primary target for nitration upon exposure to peroxynitrite. The data also suggest that the exposure of the aromatic ring to the surface of the protein, the location of the tyrosine on a loop structure, and its association with a neighboring negative charge are some of the factors determining the selectivity of tyrosine nitration in proteins.  相似文献   

10.
Nitric oxide is a precursor of reactive nitrating species such as peroxynitrite and nitrogen dioxide that modify proteins to generate 3-nitrotyrosine. Many diseases are associated with increased levels of protein-bound nitrotyrosine, and this is used as a marker for oxidative damage. However, the regulation of protein nitration and its role in cell function are unclear. We demonstrate that biological protein nitration can be a specific and dynamic process. Proteins were nitrated in distinct temporal patterns in cells undergoing inflammatory activation, and protein denitration and renitration occurred rapidly in respiring mitochondria. The targets of protein nitration varied over time, which may reflect their sensitivity to nitration, expression pattern, or turnover. The dynamic nature of the nitration process was revealed by denitration and renitration of proteins occurring within minutes in mitochondria that were subject to hypoxiaanoxia and reoxygenation. Our results have implications that are particularly important for ischemia-reperfusion injury.  相似文献   

11.
The oxygen-insensitive nitroreductases nfsA and nfsB are known to reduce para-nitrated aromatic compounds. We tested the hypothesis that these nitroreductases are capable of reducing 3-nitrotyrosine in proteins and peptides, as well as in free amino acids using wild-type and nfsA nfsB mutant strains of Escherichia coli. E. coli homogenates were incubated with nitrated proteins and the level of 3-nitrotyrosine immunoreactivity was assayed by Western blotting. Assay conditions that allow the nitroreductases to rapidly reduce nitrofurantoin did not result in the modification of 3-nitrotyrosine in protein, peptide, or free amino acid. Stimulation of nfsA nfsB activity with paraquat had no effect on 3-nitrotyrosine reduction. Nonlethal exposure of E. coli to peroxynitrite/CO(2) resulted in the reproducible nitration of tyrosine residues in endogenous proteins. The degree of 3-nitrotyrosine immunoreactivity over the 2-h postexposure period did not differ between mutant and wild-type strains. These results indicate that the nfsA and nfsB enzymes do not reduce 3-nitrotyrosine.  相似文献   

12.
Post-translational nitration of proteins was analyzed by capillary reversed-phase high-performance liquid chromatography (RP-HPLC) on-line interfaced to electrospray ionization mass spectrometry (ESI--MS) or tandem mass spectrometry (ESI--MS/MS). Both methods were compared using a tryptic digest of bovine serum albumin (BSA) and yielded sequence coverages of 95% and 33% with RP-HPLC--ESI--MS and RP-HPLC--ESI--MS/MS, respectively. At least 95% of the tyrosines were covered by the former method, whereas the latter method only detected less than 50% of the tyrosine-containing peptides. Upon liquid-phase nitration of BSA in aqueous solution using an excess of tetranitromethane, at least 16 of the 20 tyrosine residues were found to be nitrated. After exposure of solid BSA samples to gaseous nitrogen dioxide and ozone at atmospherically relevant concentration levels, only 3 nitrated peptides were detected. By use of such a model system, RP-HPLC--ESI--MS proved to be a rapid and highly efficient method for the comprehensive and quantitative detection of protein nitration.  相似文献   

13.
Peroxynitrite has been receiving increasing attention as the pathogenic mediator of nitric oxide cytotoxicity. In most cases, the contribution of peroxynitrite to diseases has been inferred from detection of 3-nitrotyrosine in injured tissues. However, presently it is known that other nitric oxide-derived species can also promote protein nitration. Mechanistic details of protein nitration remain under discussion even in the case of peroxynitrite, although recent literature data strongly suggest a free radical mechanism. Here, we confirm the free radical mechanism of tyrosine modification by peroxynitrite in the presence and in the absence of the bicarbonate-carbon dioxide pair by analyzing the stable tyrosine products and the formation of the tyrosyl radical at pH 5.4 and 7.4. Stable products, 3-nitrotyrosine, 3-hydroxytyrosine, and 3, 3-dityrosine, were identified by high performance liquid chromatography and UV spectroscopy. The tyrosyl radical was detected by continuous-flow and spin-trapping electron paramagnetic resonance (EPR). 3-Hydroxytyrosine was detected at pH 5.4 and its yield decreased in the presence of the bicarbonate-carbon dioxide pair. In contrast, the yields of the tyrosyl radical increased in the presence of the bicarbonate-carbon dioxide pair and correlated with the yields of 3-nitrotyrosine under all tested experimental conditions. Taken together, the results demonstrate that the promoting effects of carbon dioxide on peroxynitrite-mediated tyrosine nitration is due to the selective reactivity of the carbonate radical anion as compared with that of the hydroxyl radical. Colocalization of 3-hydroxytyrosine and 3-nitrotyrosine residues in proteins may be useful to discriminate between peroxynitrite and other nitrating species.  相似文献   

14.
Tempol has been shown to protect experimental animals from injuries associated with excessive nitric oxide production. In parallel, tempol decreased the levels of protein-3-nitrotyrosine in the injured tissues, suggesting that it interacted with nitric oxide-derived oxidants such as nitrogen dioxide and peroxynitrite. Relevantly, a few recent studies have shown that tempol catalytically diverts peroxynitrite/carbon dioxide reactivity toward phenol from nitration to nitrosation. To examine whether this shift occurs in biological environments, we studied the effects of tempol (10-100 microM) on peroxynitrite/carbon dioxide (1 mM/2 mM) reactivity toward proteins, native bovine serum albumin (BSA) (0.5-0.7 cys/mol) and reductively denatured BSA (7-19 cys/mol), and cells (J774 macrophages). Although not a true catalyst, tempol strongly inhibited protein-tyrosine nitration (70-90%) and protein-cysteine oxidation (20-50%) caused by peroxynitrite/carbon dioxide in BSA, denatured BSA, and cells while increasing protein-cysteine nitrosation (200-400%). Tempol consumption was attributed mainly to its reaction with protein-cysteinyl radicals. Most of the tempol, however, reacted with the radicals produced from peroxynitrite/carbon dioxide, that is, nitrogen dioxide and carbonate radical anion. Accordingly, tempol decreased the yields of BSA-cysteinyl and BSA-tyrosyl/tryptophanyl radicals, as well their decay products such as protein-3-nitrotyrosine. The parallel increase in protein-nitrosocysteine yields demonstrated that part of the peroxynitrite is oxidized to nitric oxide by the oxammonium cation produced from tempol oxidation by peroxynitrite/carbon dioxide-derived radicals. Protein-nitrosocysteine formation was shown to occur by radical and nonradical mechanisms in studies with a protein-cysteinyl radical trapper. These studies may contribute to the understanding of the protective effects of tempol in animal models of inflammation.  相似文献   

15.
In a series of heme and non-heme proteins the nitration of tyrosine residues was assessed by complete pronase digestion and subsequent HPLC-based separation of 3-nitrotyrosine. Bolus addition of peroxynitrite caused comparable nitration levels in all tested proteins. Nitration mainly depended on the total amount of tyrosine residues as well as on surface exposition. In contrast, when superoxide and nitrogen monoxide (NO) were generated at equal rates to yield low steady-state concentrations of peroxynitrite, metal catalysis seemed to play a dominant role in determining the sensitivity and selectivity of peroxynitrite-mediated tyrosine nitration in proteins. Especially, the heme-thiolate containing proteins cytochrome P450(BM-3) (wild type and F87Y variant) and prostacyclin synthase were nitrated with high efficacy. Nitration by co-generated NO/O(2)(-) was inhibited in the presence of superoxide dismutase. The NO source alone only yielded background nitration levels. Upon changing the NO/O(2)(-) ratio to an excess of NO, a decrease in nitration in agreement with trapping of peroxynitrite and derived radicals by NO was observed. These results clearly identify peroxynitrite as the nitrating species even at low steady-state concentrations and demonstrate that metal catalysis plays an important role in nitration of protein-bound tyrosine.  相似文献   

16.
Heart carnitine palmitoyl transferase I (CPTI) is inhibited in vivo during endotoxaemia and in vitro by peroxynitrite but the biochemical basis of this inhibition is not known. The aim of this study was to determine which isoform of CPT I is inhibited during endotoxaemia and whether the inhibition is due to increased tyrosine nitration. Cardiac mitochondria were isolated from endotoxaemic suckling rats. To determine whether M- or L-CPTI was inhibited, we carried out titrations with DNP-etomoxir-CoA. Slopes of the titration curves with DNP-etomoxir-CoA were no different between control and endotoxaemia, suggesting that M-CPTI was specifically inhibited. Immunoprecipitation was carried out using an anti-nitrotyrosine antibody. Immunoprecipitated proteins were identified by Western blotting with L- and M-CPTI specific antibodies. L-CPTI was nitrated both in control and in 2- and 6-h endotoxaemia mitochondria but there was no significant difference in the level of nitration. M-CPTI was also nitrated in control mitochondria but nitration was significantly increased at both 2- and 6-h endotoxaemia. Either 10 mM 3-nitrotyrosine plus 40 microg nitrated-albumin or 0.5 M dithionite, during immunoprecipitation, greatly decreased immunopositivity for M- and L-CPTI on WB. M-CPTI appears to be a novel target for peroxynitrite during endotoxaemia, which would alter myocardial substrate selection.  相似文献   

17.
One of the important sites of peroxynitrite action that affects cellular function is known to be nitration of tyrosine residues. However, tryptophan residues could be another target of peroxynitrite-dependent modification of protein function, as we have shown previously using a model protein (F. Yamakura et al., J. Biochem. 138:57-69; 2005). Here, we report the identification of several proteins that allowed us to determine the position of nitrotryptophan in their amino acid sequences in a more complex system. We modified lysates from PC12 cells with and without nerve growth factor (NGF) by treatment with peroxynitrite (0.98 or 4.9 mM). Western blot analyses using anti-6-nitrotryptophan antibody showed several immunoreactive bands and spots, which were subsequently subjected to trypsin digestion and LC-ESI-MS-MS analysis. We identified several tryptic peptides including nitrotryptophan residues, which were derived from L-lactate dehydrogenase A, malate dehydrogenase 1, M2 pyruvate kinase, and heat-shock protein 90 α, in peroxynitrite-treated lysates from PC12 cells, and l-lactate dehydrogenase A, malate dehydrogenase 1, transaldorase, and lactoylglutathione lyase, in peroxynitrite-treated lysates from NGF/PC12 cells. The molar ratio of 3-nitrotyrosine to 6-nitrotryptophan in protease-digested PC12 cell lysates treated with peroxynitrite was determined to be 5.8 to 1 by using an HPLC-CoulArray system. This is the first report to identify several specific sites of nitrated tryptophan on proteins in a complex system treated with peroxynitrite and to compare the susceptibility of nitration between tryptophan and tyrosine residues of the proteins.  相似文献   

18.
Myoglobin-catalyzed tyrosine nitration: no need for peroxynitrite.   总被引:1,自引:0,他引:1  
The nitration of tyrosine residues in protein to yield 3-nitrotyrosine derivatives has been suggested to represent a specific footprint for peroxynitrite formation in vivo. However, recent studies suggest that certain hemoproteins such as peroxidases catalyze the H(2)O(2)-dependent nitration of tyrosine to yield 3-nitrotyrosine in a peroxynitrite-independent reaction. Because 3-nitrotyrosine has been shown to be present in the postischemic myocardium, we wished to assess the ability of myoglobin to catalyze the nitration of tyrosine in vitro. We found that myoglobin catalyzed the oxidation of nitrite and promoted the nitration of tyrosine. Both nitrite oxidation and tyrosine nitration were H(2)O(2)-dependent and required the formation of ferryl (Fe(+4)) myoglobin. In addition, nitrite oxidation and tyrosine nitration were pH-dependent with a pH optimum of approximately 6.0. Taken together, these data suggest that the acidic pH and low oxygen tension produced during myocardial ischemia will facilitate myoglobin-catalyzed, peroxyntrite-independent formation of 3-nitrotyrosine.  相似文献   

19.
Tyrosine nitration is a well-established protein modification that occurs in disease states associated with oxidative stress and increased nitric oxide synthase activity. Nitration of specific tyrosine residues has been reported to affect protein structure and function, suggesting that 3-nitrotyrosine formation may not only be a disease marker but may also be involved in the pathogenesis of some diseases and in normal regulatory processes. It has been, however, difficult to identify sites of nitration. We describe a method that combines specific isolation of nitrated proteins with mass spectrometric determination of the amino acid sequence and the site of nitration of individual proteins. A complex protein mixture, e.g., serum or cell lysate, was enriched for nitrotyrosine-containing proteins by immunoprecipitation with antinitrotyrosine antibodies. The nitrotyrosines were then reduced to aminotyrosines with a strong reducing agent in parallel in-gel and in-solution procedures. Using nitrated human serum albumin as a model, we reduced the disulfide bonds with dithiothreitol and alkylated the free sulfhydryl groups with iodoacetamide. The nitrotyrosines were next reduced to aminotyrosines with sodium dithionite, and-at pH 5.0-cleavable biotin tags were selectively attached to the aminotyrosines and the albumin was then digested with trypsin. The biotinylated tryptic peptides were purified on a streptavidin affinity column and identified by mass spectrometry. We have also purified nitrated human serum albumin from an enriched sample of SJL mouse plasma and confirmed its identity by peptide mass fingerprinting and MASCOT.  相似文献   

20.
Protein tyrosine nitration is one of the post-translational modifications that alter the biological function of proteins. Two important mechanisms are involved: peroxynitrite formation and myeloperoxidase or eosinophil peroxidase (EPO) activity. In the present work we studied the nitration of proteins in the in vivo system of chicken embryo chorioallantoic membrane (CAM). 3-Nitrotyrosine was detected only in the insoluble fraction of the CAM homogenate. By immunoprecipitation, Western blot analysis, and double immunofluorescence, we identified two major polypeptides that were nitrated: actin and alpha-tubulin. Quantification of actin and alpha-tubulin nitration revealed that they are differentially nitrated during normal development of the chicken embryo CAM. After irradiation, although they were both increased, they required different time periods to return to the physiological levels of nitration. It seems that both peroxynitrite formation and EPO activity are involved in the in vivo tyrosine nitration of cytoskeletal proteins. These data suggest that tyrosine nitration of cytoskeletal proteins has a physiological role in vivo, which depends on the protein involved and is differentially regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号