首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.

Nickel (Ni), an essential micronutrient and a prime component of the plant enzyme urease, has an indispensable role in plants. Triacontanol (TRIA) is a conspicuous plant growth regulator in agriculture, which proved advantageous in enhancing the overall production of plants. Therefore, an experiment was laid down to understand the effects of Ni toxicity on the menthol mint (Mentha arvensis L.) and its mitigation by exogenously applied TRIA. The different treatments applied to the plants were 0 (control), TRIA (10−6 M), Ni (60 mg kg−1), Ni (80 mg kg−1), TRIA (10−6 M) + Ni (60 mg kg−1), and TRIA (10−6 M) + Ni (80 mg kg−1). This work was evaluated on the basis of various growth, biochemical, physiological, yield and quality parameters. Nickel applied at 80 mg kg−1 of soil exhibited maximum inhibition in the parameters studied. Application of TRIA improved all the growth parameters such as plant height, fresh and dry weights as well as herbage yield under non stress and stressed conditions. The levels of carbonic anhydrase (CA) activity, photosynthetic parameters (chlorophyll and carotenoids), and chlorophyll fluorescence of the plants were also stimulated by TRIA under Ni stress. Exogenous TRIA also displayed positive effects on the cellular antioxidant defense mechanism of Ni-affected plants as it increased the levels of proline (PRO), electrolytic leakage (EL), and activities of antioxidant enzymes, viz. superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), therefore, restrained the triggering of the oxidative burst (reactive oxygen species) in the plant cells. Moreover, TRIA improved the overall production (in terms of yield and content) of EO in the plants and maintained the leaf ultrastructure and root morphology under Ni treatment. GC–MS analysis revealed that TRIA upregulated the level of menthone and menthyl acetate over their respective controls and under Ni-stressed condition.

  相似文献   

2.
Two plant growth promoting rhizobacteria––Sinorhizobium meliloti RMP1 and Pseudomonas aeruginosa GRC2 were studied for integrated nutrient management to obtain improved yield of Brassica juncea. Low concentrations of urea and diammonium phosphate (DAP) stimulated the growth of both S. meliloti RMP1 and P. aeruginosa GRC2. 1 M of urea and 0.35 M of DAP was found lethal for RMP1, while 1.3 M and 0.37 M concentrations of urea and DAP proved to be toxic for GRC2. Lc50 was observed as 0.49 M of urea and 0.15 M of DAP for RMP1, and 0.66 M urea and 0.18 M of DAP for GRC2. Urea and DAP adaptive variants of RMP1 and GRC2 was isolated. Adaptive bacterial variants had better growth rates at sub-lethal (Lc50) concentrations of urea and DAP as compared to non-adaptive variants. They also retained plant growth promoting attributes similar to non adaptive variants. GRC2 and RMP1 did not affect the growth of each other and were chemotactically active for DAP, urea as well as root exudates of B. juncea. Both the isolates colonized well in the rhizosphere of B. juncea, as their populations were recorded ≈5 log10 cfu g−1 after 120 days. Interestingly, the colonization ability was found even better when both strains were co-inoculated, as their population was recorded in the range of ≈6 log10 cfu g−1 after 120 days. In field trials, application of RMP1 and GRC2 resulted in significant increase in biomass and yield of B. juncea as compared to control. However, yield was better with application of half dose and full dose of recommended fertilizers. Interestingly, the biomass as well as yield improved further when both isolates were applied together along with half dose of recommended fertilizers.  相似文献   

3.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

4.
Staphylococcus saprophyticus strains ATCC 15305, ATCC 35552, and ATCC 49907 were found to require l-proline but not l-arginine for growth in a defined culture medium. All three strains could utilize l-ornithine as a proline source and contained l-ornithine aminotransferase and Δ1-pyrroline-5-carboxylate reductase activities; strains ATCC 35552 and ATCC 49907 could use l-arginine as a proline source and had l-arginase activity. The proline requirement also could be met by l-prolinamide, l-proline methyl ester, and the dipeptides l-alanyl-l-proline and l-leucyl-l-proline. The bacteria exhibited l-proline degradative activity as measured by the formation of Δ1-pyrroline-5-carboxylate. The specific activity of proline degradation was not affected by addition of l-proline or NaCl but was highest in strain ATCC 49907 after growth in Mueller–Hinton broth. A membrane fraction from this strain had l-proline dehydrogenase activity as detected both by reaction of Δ1-pyrroline-5-carboxylate with 2-aminobenzaldehyde (0.79 nmol min−1 mg−1) and by the proline-dependent reduction of p-iodonitrotetrazolium (20.1 nmol min−1 mg−1). A soluble fraction from this strain had Δ1-pyrroline-5-carboxylate dehydrogenase activity (88.8 nmol min−1 mg−1) as determined by the NAD+-dependent oxidation of dl1-pyrroline-5-carboxylate. Addition of l-proline to several culture media did not increase the growth rate or final yield of bacteria but did stimulate growth during osmotic stress. When grown with l-ornithine as the proline source, S. saprophyticus was most susceptible to the proline analogues L-azetidine-2-carboylate, 3,4-dehydro-dl-proline, dl-thiazolidine-2-carboxylate, and l-thiazolidine-4-carboxylate. These results indicate that proline uptake and metabolism may be a potential target of antimicrobial therapy for this organism.  相似文献   

5.
The production of l-phenylalanine is conventionally carried out by fermentations that use glucose or sucrose as the carbon source. This work reports on the use of glycerol as an inexpensive and abundant sole carbon source for producing l-phenylalanine using the genetically modified bacterium Escherichia coli BL21(DE3). Fermentations were carried out at 37°C, pH 7.4, using a defined medium in a stirred tank bioreactor at various intensities of impeller agitation speeds (300–500 rpm corresponding to 0.97–1.62 m s−1 impeller tip speed) and aeration rates (2–8 L min−1, or 1–4 vvm). This highly aerobic fermentation required a good supply of oxygen, but intense agitation (impeller tip speed ~1.62 m s−1) reduced the biomass and l-phenylalanine productivity, possibly because of shear sensitivity of the recombinant bacterium. Production of l-phenylalanine was apparently strongly associated with growth. Under the best operating conditions (1.30 m s−1 impeller tip speed, 4 vvm aeration rate), the yield of l-phenylalanine on glycerol was 0.58 g g−1, or more than twice the best yield attainable on sucrose (0.25 g g−1). In the best case, the peak concentration of l-phenylalanine was 5.6 g L−1, or comparable to values attained in batch fermentations that use glucose or sucrose. The use of glycerol for the commercial production of l-phenylalanine with E. coli BL21(DE3) has the potential to substantially reduce the cost of production compared to sucrose- and glucose-based fermentations.  相似文献   

6.
A pot experiment was conducted to find out whether the foliar spray of salicylic acid (SA) could successfully ameliorate the adverse effects of salinity stress on periwinkle. Thirty-day-old plants were supplied with Control; 0 mM NaCl + 10−5 M SA (T1); 50 mM NaCl + 0 SA (T2); 100 mM NaCl + 0 SA (T3); 150 mM NaCl + 0 SA (T4); 50 mM NaCl + 10−5 M SA (T5); 100 mM NaCl + 10−5 M SA (T6); 150 mM NaCl + 10−5 M SA (T7). The plants were sampled 90 days after sowing to assess the effect of SA on stressed and unstressed plants. Salt stress significantly reduced the growth attributes including plant height, leaf-area index, shoot and root fresh weights, shoot and root dry weights. Increasing NaCl concentrations led to a gradual decrease in photosynthetic parameters and activities of nitrate reductase and carbonic anhydrase. Ascorbic acid, total alkaloids and antioxidants enzymes superoxide dismutase, catalase and peroxidase also declined in NaCl-treated plants. The plants, undergoing NaCl stress, exhibited a significant increase in electrolyte leakage and proline content. Foliar application of SA (10−5 M) reduced the damaging effect of salinity on plant growth and accelerated the restoration of growth processes. It not only improved the growth parameters but also reversed the effects of salinity. Total alkaloid content was improved by SA application both in unstressed and stressed plants. The highest level of total alkaloid content recorded in leaves of SA-treated stressed plants was 11.1%. Foliar spray of SA overcame the adverse effect of salinity by improving the content of vincristine (14.0%) and vinblastine (14.6%) in plants treated with 100 M NaCl.  相似文献   

7.
Fluorescence resonance energy transfer (FRET), time-resolved fluorescence and anisotropy decays were determined in large unilamellar vesicles (LUVs) of egg phosphatidylcholine with the FRET pair N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phospho-ethanolamine as donor and lissamine rhodamine B 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as acceptor, using 2-ps pulses from a Ti:sapphire laser on LUVs with incorporated plant growth regulators: triacontanol (TRIA) and jasmonic acid (JA). FRET efficiency, energy transfer rate, rotation correlation time, microviscosity, and diffusion coefficient of lateral diffusion of lipids were calculated from these results. It was observed that TRIA and JA differentially modulated all parameters studied. The effect of JA in such modulations was always partially reversed by TRIA. Also, the generalized polarization of laurdan fluorescence indicated that JA enhances the degree of hydration in lipid bilayers to a larger extent than does TRIA. Solid-state 31P magic-angle spinning nuclear magnetic resonance spectra of LUVs showed two chemical shifts, at 0.009 and −11.988 ppm, at low temperatures (20°C), while at increasing temperatures (20–60°C) only one (at −11.988 ppm) was prominent and the other (0.009 ppm) gradually became obscure. However, LUVs with TRIA exhibited only one of the shifts at 0.353 ppm even at lower temperatures and JA did not affect the chemical shifts. An erratum to this article can be found at  相似文献   

8.
Exogenously applied ABA-β-d-glucopyranosyl ester (ABA-GE) inhibited shoot growth of alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), Digitaria sanguinalis L., timothy (Pheleum pratense L.) and ryegrass (Lolium multiflorum Lam.) seedlings at concentrations greater than 0.1 μM. The growth inhibitory activity of ABA-GE on these shoots was 26–40% of that of (+)-ABA. ABA-β-d-glucosidase activities in these seedlings were 11–31 nmol mg−1 protein min−1. These results suggests that exogenously applied ABA-GE may be absorbed by plant roots and hydrolyzed by ABA-β-d-glucosidase, and liberated free ABA may induce the growth inhibition in these plants. Thus, although ABA-GE had been thought to be physiologically inactive ABA conjugate, ABA-GE may have important physiological functions rather than an inactive conjugated ABA form.  相似文献   

9.
d-Arabitol production from lactose by Kluyveromyces lactis NBRC 1903 has been studied by following the time courses of concentrations of cell mass, lactose, d-arabitol, ethanol, and glycerol at different temperatures. It was found that temperature is a key factor in d-arabitol production. Within temperatures ranging from 25 to 39°C, the highest d-arabitol concentration of 99.2 mmol l−1 was obtained from 555 mmol l−1 of lactose after 120 h of batch cultivation at 37°C. The yield of d-arabitol production on cell mass growth increased drastically at temperatures higher than 35°C, and the yield reached 1.07 at 39°C. Increasing the cell mass concentration two-fold after 24 h of culture growth at 37°C, the d-arabitol concentration further increased to 168 mmol l−1. According to the distribution of the metabolic products, metabolic changes related to growth phase were also discussed. The stationary-phase K. lactis cells in the batch culture that is started with exposing the precultured inoculum to high osmotic stress, high oxidative stress, and high heat stress are found to be preferable for d-arabitol production.  相似文献   

10.
In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.  相似文献   

11.
The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.  相似文献   

12.
In the fed-batch culture of glycerol using a metabolically engineered strain of Escherichia coli, supplementation with glucose as an auxiliary carbon source increased lycopene production due to a significant increase in cell mass, despite a reduction in specific lycopene content. l-Arabinose supplementation increased lycopene production due to increases in cell mass and specific lycopene content. Supplementation with both glucose and l-arabinose increased lycopene production significantly due to the synergistic effect of the two sugars. Cell growth by the consumption of carbon sources was related to endogenous metabolism in the host E. coli. Supplementation with l-arabinose stimulated only the mevalonate pathway for lycopene biosynthesis and supplementation with both glucose and l-arabinose stimulated synergistically only the mevalonate pathway. In the fed-batch culture of glycerol with 10 g l−1 glucose and 7.5 g l−1 l-arabinose, the cell mass, lycopene concentration, specific lycopene content, and lycopene productivity after 34 h were 42 g l−1, 1,350 mg l−1, 32 mg g cells−1, and 40 mg l−1 h−1, respectively. These values were 3.9-, 7.1-, 1.9-, and 11.7-fold higher than those without the auxiliary carbon sources, respectively. This is the highest reported concentration and productivity of lycopene.  相似文献   

13.
Gao J  Qu J  Yang W  Wei X  Dai H  Lv D  Ren J  Chen H 《Amino acids》2009,36(3):391-397
A simple and rapid method was devised for determination of tryptophan, based on the Belousov-Zhabotinskii (B-Z) oscillating chemical system. Changes in oscillating period and amplitude were linearly proportional to the negative logarithm of l-tryptophan concentration over the range of 6.44 × 10−7–2.55 × 10−4 M, with the regression coefficients of near unity and a lower detection limit of 6.5 × 10−8 M. d-tryptophan was also examined although it is rarely found in most biological fluids, and perhaps not at all in natural proteins. The change of period against to negative logarithm of d-tryptophan concentration over the range of 4.9 × 10−5–8.24 × 10−4 M is linear. Because the optimum conditions for determination of l- and d-tryptophan are not the same, a little amount of d-tryptophan does not affect the determination of l-tryptophan. Various influences were studied and a possible mechanism of perturbation to the B-Z oscillator by tryptophan was also discussed. Spectrophotometry and fluorescence spectrophotofluorimetry were used for comparision and confirmation of the results.  相似文献   

14.
Summary The highest percentage of shoot regeneration of Costus speciosus was achieved using thin rhizome sections and triacontanol (TRIA). Factors affecting the rate of shoot multiplication and rooting with TRIA have been investigated. Initiation of shoot buds was observed when rhizome thin sections were cultured on B5 basal medium supplemented with 5μgl−1 TRIA. Shoots with two to three leaves produced roots when cultured on B5 basad medium supplemented with 2 μgl−1 TRIA. The well-rooted shoots were hardened and transferred to soil where they showed normal growth and a 100% survival rate was achieved. Results of this study showed that TRIA can be used as an effective growth regulator in the micropropagation and conservation of C. speciosus.  相似文献   

15.
An efficient in vitro regeneration protocol and field performance of a multipurpose bamboo species Dendrocalamus hamiltonii Nees et Arn. Ex Munro has been demonstrated using single node cuttings taken from the lateral branches of a 20-year-old bush. Axillary buds on the nodal explant sprouted within 10 days of culture on Murashige and Skoog (MS) medium without any plant growth substance. High-frequency proliferation was induced on the propagules (small clusters with 3–5 multiple shoots and rhizomatous portions). Subsequent removal of the shoots (about 1.5 cm) from the rhizomatous portion of propagules (shoot cut) influenced the plantlet formation capacity. A multiplication of about 20-folds was achieved on MS medium supplemented with 8 μM BAP and 1 μM NAA. Rooting efficiency was also markedly enhanced (>90%) when the propagules, following shoot cut, were placed on to MS medium supplemented with 100 μM IBA for 10 days and then transferred to IBA-free medium. This is the first report from this species where 20-fold increment in multiplication was observed at the end of second subculture followed by >90% rooting. The hardened plants, established in the field, exhibited normal growth; their physiological performance has been monitored at 6-month intervals. The rate of photosynthesis increased from 3.55 μmol CO2 m−2 s−1 (hardened, ready for field transfer) to 5.44 μmol m−2 s−1 (6 months of field transfer); following a year of plantation net photosynthesis recorded was 14.0 μmol CO2 m−2 s−1 while after 1.5 years it was 12.76 μmol CO2 m−2 s−1. These values were compared with those observed for the mother bush. Genetic fidelity of these regenerants was established by RAPD analysis advocating clonal propagation of this species through nodal segment culture and its commercial cultivation.  相似文献   

16.
Embryogenic suspensor mass (ESM) was established from immature seeds of Fraser fir. The initiation frequency of ESM was dependent on genotype, collection time, medium, and plant growth regulators (PGR) used. The ESM initiation potential was higher with seeds collected in late June (clone 16-273, 4.7%) or early July (clone 16-45, 2.2%) and decreased as the zygotic embryos matured. Excised proembryo stage of zygotic embryos was most appropriate to initiation of ESM. Most of the ESM arose from the seeds that were at the proembryo stage. From the four different culture media we compared, seven ESM lines were obtained: two lines from Murashige and Skoog (MS) medium with 4.4 μM benzyladenine (BA), one from Schenk and Hildebrandt (SH) medium with 4.5 μM thidiazuron (TDZ), and four from SH with 4.4 μM 6-benzyladenine. However, only one ESM line from clone 16-273 (June 24, SH+TDZ) could be proliferated in subsequent culture. Different concentrations of l-glutamine and casein hydrolysate (CH) in the medium were also compared for their effect on ESM proliferation. The highest proliferation rate (1.16-fold) was obtained from SH medium supplemented with 250 mg/L CH and 3.42 mM l-glutamine. In contrast, the lowest rate was noted when 1,000 mg/L CH plus 3.42 mM l-glutamine (0.17-fold) was added to the medium. As for somatic embryo maturation, the highest number of mature precotyledonary (100.1/g−1 FW ESM) or cotyledonary (64.3/g−1 FW ESM) somatic embryos was obtained on a medium containing 20 or 80 μM abscisic acid, 10% polyethyleneglycol, 4% maltose, and 0.3% gellan gum. For germination of the somatic embryos, the cotyledonary somatic embryos derived from maturation medium were transferred on half-strength Litvay medium containing 0.3% gellan gum. The somatic plantlets were recovered from the germination medium and transferred to soils.  相似文献   

17.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

18.
A Corynebacterium glutamicum strain (ΔldhA-pCRA717) that overexpresses the pyc gene encoding pyruvate carboxylase while simultaneously exhibiting a disrupted ldhA gene encoding l-lactate dehydrogenase was investigated in detail for succinic acid production. Succinic acid was shown to be efficiently produced at high-cell density under oxygen deprivation with intermittent addition of sodium bicarbonate and glucose. Succinic acid concentration reached 1.24 M (146 g l−1) within 46 h. The yields of succinic acid and acetic acid from glucose were 1.40 mol mol−1 (0.92 g g−1) and 0.29 mol mol−1 (0.10 g g−1), respectively. The succinic acid production rate and yield depended on medium bicarbonate concentration rather than glucose concentration. Consumption of bicarbonate accompanied with succinic acid production implied that added bicarbonate was used for succinic acid synthesis.  相似文献   

19.
A putative ribose-5-phosphate isomerase (RpiB) from Streptococcus pneumoniae was purified with a specific activity of 26.7 U mg−1 by Hi-Trap Q HP anion exchange and Sephacryl S-300 HR 16/60 gel filtration chromatographies. The native enzyme existed as a 96-kDa tetramer with activity maxima at pH 7.5 and 35°C. The RpiB exhibited isomerization activity with l-lyxose, l-talose, d-gulose, d-ribose, l-mannose, d-allose, l-xylulose, l-tagatose, d-sorbose, d-ribulose, l-fructose, and d-psicose and exhibited particularly high activity with l-form monosaccharides such as l-lyxose, l-xylulose, l-talose, and l-tagatose. With l-xylulose (500 g l−1) and l-talose (500 g l−1) substrates, the optimum concentrations of RpiB were 300 and 600 U ml−1, respectively. The enzyme converted 500 g l−1 l-xylulose to 350 g l−1 l-lyxose after 3 h, and yielded 450 g l−1 l-tagatose from 500 g l−1 l-talose after 5 h. These results suggest that RpiB from S. pneumoniae can be employed as a potential producer of l-form monosaccharides.  相似文献   

20.
Establishment, maintenance, regeneration, and transformation of somatic embryos by both direct and indirect means (callus-mediated) was achieved for Bixa orellana, a tropical plant whose seeds produce commercially edible ‘annatto pigment,’ which mainly constitutes an apocarotenoid called bixin. Callus-mediated methodology was found to be efficient in producing a greater number of embryos in a short time. The maximum of 28 somatic embryos were produced in 16–18 weeks when immature zygotic embryonic stalks were inoculated onto Murashige and Skoog (MS) medium containing B5 vitamins supplemented with 0.44 μM benzyladenine (BA), 0.054 μM α-naphthaleneacetic acid (NAA), 2.89 μM gibberellic acid (GA3), 0.02 μM triiodobenzoic acid (TIBA), and 0.011 μM triacontanol (TRIA). Callus initiation from hypocotyl explants was obtained on MS medium supplemented with 1.07–2.14 μM NAA and 10.2 μM BA. In 3 months, somatic embryos were produced when callus was inoculated onto MS medium supplemented with 4.44 μM BA, 40 μM AgNO3, and 0.011 μM TRIA. Somatic embryos were efficiently regenerated on MS basal solid and liquid media supplemented with 0.44–4.4 μM BA, 0.54–2.69 μM NAA, 4.92 μM 2iP, 2.1 μM calcium d-pantothenate, 0.21 μM biotin, 227.7 μM cysteine HCl monohydrate, and 108.6 μM adenine sulfate. Agrobacterium tumefaciens GV 3101 harboring pCAMBIA 1305.2 binary vector-mediated stable transformation of somatic embryos exhibited a transformation frequency of 2.56%. As somatic embryogenesis in any perennial system is useful in terms of both commercial and scientific nature, this somatic embryo-based transformation protocol for the commercially important dye-yielding tropical plant B. orellana is useful for its improvement through genetic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号