首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacteriophage RNA polymerases are widely used to synthesize defined RNAs on a large scale in vitro. Unfortunately, the RNA product contains a small proportion of contaminating RNAs, including complementary species, which can lead to errors of interpretation. We cloned the gene encoding Ad2 VA RNAI into a vector containing a T7 RNA polymerase promoter in order to generate large quantities of VA RNA for the study of its interaction with the dsRNA-dependent protein kinase DAI. Exact copies of VA RNAI were synthesized efficiently, but were contaminated with small amounts of dsRNA which activated DAI and confounded interpretation of kinase assays. We therefore developed a method to remove the dsRNA contaminants, allowing VA RNAI and mutants to be tested for their ability to activate or inhibit DAI. This method appears to be generally applicable.  相似文献   

3.
A mechanism for the control of protein synthesis by adenovirus VA RNAI   总被引:55,自引:0,他引:55  
  相似文献   

4.
Anatomy of region L1 from adenovirus type 2.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

5.
6.
We compared the sequences of the virus-associated (VA) RNAs of group C adenoviruses, serotypes 1, 2, 5, and 6, and of three variants of adenovirus type 2 (Ad2) selected for loss of the BamHI restriction site in the VA RNAI gene. In the naturally occurring strains. VA RNAI exists in two forms which differ by two nucleotides: one form is found in Ad2 and Ad6, and the other is found in Ad1 and Ad5. There are three sites of variation in Va RNAII, the Ad1, Ad2, and Ad5 forms each differing from Ad6 VA RNAII at one of the positions. One of the selected variants has a four-base duplication within the BamHI cleavage site, whereas the two others have acquired a VA RNAI sequence indistinguishable from that of Ad5. The findings are interpreted in terms of the secondary structures of the VA RNAs and the interrelationships among the viruses.  相似文献   

7.
Adenovirus virus-associated (VA) RNAI is required for efficient protein synthesis at late times of adenoviral infection, and in some other situations where double-stranded RNA (dsRNA) is present. It prevents inhibition of protein synthesis by a dsRNA-activated protein kinase and the secondary structure of VA RNAI is though to be important for its activity. To test this idea and to define structures and sequences responsible for VA RNAI activity, we constructed several mutant VA RNA genes and tested them in a transient expression assay. Activity is unaffected by deletions within a small region near the center of the gene, nt 72-85, but it is greatly diminished by deletion or substitution of sequences on the 3' side of this region. The structures of wild-type and mutant RNAs were examined by nuclease-sensitivity analysis. We propose a model for wild-type VA RNAI which differs from that predicted to be the most stable structure. Surprisingly disruption of the longest duplex region in the molecule is tolerated, provided that adjacent structural elements are not rearranged. However, perturbations of elements located in the center of the structure correlate well with loss of function.  相似文献   

8.
Gene organization of the transforming region of adenovirus type 7 DNA   总被引:8,自引:0,他引:8  
R Dijkema  B M Dekker  H van Ormondt 《Gene》1982,18(2):143-156
The sequence of the leftmost 11% of the weakly oncogenic human adenovirus type 7 (Ad7) DNA has been determined. This part of the Ad7 viral genome encompasses early region E1 which has been shown to be involved in the process of cell transformation in vitro (Dijkema et al., 1979). From the nucleotide sequence and determined coordinates of the E1 mRNAs, we are able to predict the primary structure of the polypeptides encoded by the transforming region of Ad7. The organization of the E1 region of Ad7 and of other adenovirus serotypes (Bos et al. 1981) leads to the proposal of a novel mechanism for gene regulation at the translational level in which protein synthesis can initiate at either the first or the second AUG triplet available in mRNA. The differences between the large E1b-specific tumor antigens of adenovirus types 12, 7 and 5 may explain the differences in oncogenicity of these viruses.  相似文献   

9.
The early and late gene products of human adenovirus type 12 (Ad12), as well as the viral proteins synthesized in an Ad12-transformed cell line, were identified by translation of viral mRNA in an in vitro protein-synthesizing system. Cytoplasmic RNA was isolated from permissive KB or nonpermissive BHK cells infected with Ad12 and from Ad12-transformed HA12/7 cells. Virus-specific RNA was selected by hybridization to Ad12 DNA covalently bound to cellulose. Viral RNA was then translated in a fractionated rabbit reticulocyte cell-free system or in wheat germ S-30 extracts. The proteins synthesized were characterized by immunoprecipitation and subsequent electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. RNA prepared from KB cells late after infection with Ad12 elicited the synthesis of most of the structural polypeptides of the virion and at least two presumably nonstructural Ad12 proteins. When viral RNA isolated early after infection of KB cells with Ad12 was translated in vitro, 10 polypeptides were observed: E-68K, E-50K, E-42K, E-39K, E-34K, E-21K, E-19K, E-13K, E-12K, and E-10K. Ad12-specific RNA was also isolated from the Ad12-transformed hamster cell line HA12/7, which contains several copies of the Ad12 genome integrated in the host genome. The RNA codes for at least seven polypeptides with molecular weights very similar to those of the early viral proteins.  相似文献   

10.
11.
The small (160 nt) adenovirus RNA, VA RNAI, antagonizes the activation of the cellular protein kinase PKR (also known as DAI), a key regulator of gene expression. VA RNA consists of two stems separated by a complex region, the central domain, that is essential for its function. A notable feature of the central domain is a pair of tetranucleotides, GGGU and ACCC, which are mutually complementary and phylogenetically conserved. To investigate their role in the structure and function of VA RNA, we generated three sets of mutations designed to disrupt the putative stem and to restore it with different nucleotides. Substitutions in either of the tetranucleotides abrogated VA RNA function in two independent PKR-based assays, demonstrating the importance of these sequences in vivo. Compensating mutants restored function, indicating that the two tetranucleotides pair in the cell, but all of the compensating mutants were less active than wild-type VA RNA. The effects of the mutations on RNA structure were probed by nuclease sensitivity analysis. Pronounced changes in two loops in the central domain correlated closely with the formation and disruption of the stem, suggesting that the tetranucleotide stem defines a critical element in the structure of the central domain through tertiary interactions with the two loops. A model for the central domain is presented that accommodates these findings and also accounts for the known sites of PKR interaction.  相似文献   

12.
Human adenoviruses (HAds) encode for one or two highly abundant virus-associated RNAs, designated VA RNAI and VA RNAII, which fold into stable hairpin structures resembling miRNA precursors. Here we show that the terminal stem of the VA RNAs originating from Ad4, Ad5, Ad11 and Ad37, all undergo Dicer dependent processing into virus-specific miRNAs (so-called mivaRNAs). We further show that the mivaRNA duplex is subjected to a highly asymmetric RISC loading with the 3′-strand from all VA RNAs being the favored strand, except for the Ad37 VA RNAII, where the 5′-mivaRNAII strand was preferentially assembled into RISC. Although the mivaRNA seed sequences are not fully conserved between the HAds a bioinformatics prediction approach suggests that a large fraction of the VA RNAII-, but not the VA RNAI-derived mivaRNAs still are able to target the same cellular genes. Using small RNA deep sequencing we demonstrate that the Dicer processing event in the terminal stem of the VA RNAs is not unique and generates 3′-mivaRNAs with a slight variation of the position of the 5′ terminal nucleotide in the RISC loaded guide strand. Also, we show that all analyzed VA RNAs, except Ad37 VA RNAI and Ad5 VA RNAII, utilize an alternative upstream A start site in addition to the classical +1 G start site. Further, the 5′-mivaRNAs with an A start appears to be preferentially incorporated into RISC. Although the majority of mivaRNA research has been done using Ad5 as the model system our analysis demonstrates that the mivaRNAs expressed in Ad11- and Ad37-infected cells are the most abundant mivaRNAs associated with Ago2-containing RISC. Collectively, our results show an unexpected variability in Dicer processing of the VA RNAs and a serotype-specific loading of mivaRNAs into Ago2-based RISC.  相似文献   

13.
14.
A small RNA species, distinct from the VA RNAs, has been identified in HeLa cells infected with adenovirus type 2. The RNA, which has been purified using a novel screening procedure, is polyadenylated, sediments at 9S and has an estimated length of 550 nucleotides. In a cell-free translation system, the 9S RNA directs the synthesis of virion polypeptide IX, molecular weight 12,000 daltons. The location of its gene has been established by hybridization of the RNA to fragments of viral DNA produced by cleavage with restriction endonucleases: it spans position 10.0 on the r strand of the viral genome. These results unexpectedly place the gene for a “late” protein within a region of the genome which is transcribed early during infection.  相似文献   

15.
U Weyer  W Doerfler 《The EMBO journal》1985,4(11):3015-3019
In hamster cells human adenovirus type 12 (Ad12) is deficient in DNA replication and late gene expression whereas adenovirus type 2 (Ad2) can replicate. Functions located in the E1 region of the Ad2 or adenovirus type 5 (Ad5) genome can complement the deficiencies of the Ad12 genome in hamster cells, but, infectious viral particles are not produced. We have now investigated the activity of the major late promoter of Ad2 and of Ad12 DNA in human and hamster cells. This promoter governs the expression of most of the late viral functions. We have inserted the major late promoter (MLP) of Ad2 or of Ad12 DNA in front of the chloramphenicol acetyl transferase gene in the pSVO-CAT construct. Upon transfection into uninfected human and hamster cells, the pAd12MLP-CAT construct shows no significant activity; the pAd2MLP-CAT construct exhibits low activity. In Ad12-infected human cells, both constructs are active. These findings support the notion that other viral factors are required for MLP activity of Ad2 or Ad12 DNA in permissive human cells. In Ad2-infected hamster cells, both the pAd2MLP-CAT and the pAd12MLP-CAT constructs are active. Apparently, the Ad12 MLP can be activated by Ad2 functions, as already demonstrated for the entire Ad12 genome in double-infected cells or in Ad2- or Ad5-transformed cells superinfected with Ad12. In Ad12-infected hamster cells, however, the MLP of Ad12 DNA is inactive but that of Ad2 DNA shows activity. Thus the MLP of Ad12 DNA somehow differentiates between cellular auxiliary functions of different species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
J A Engler  M S Hoppe  M P van Bree 《Gene》1983,21(1-2):145-159
The nucleotide sequence of a cloned DNA segment encoding the early region 2b from the group B human adenovirus Ad7 has been determined. When compared to Ad2, a group C adenovirus, these sequences were found to be approx. 80% homologous within the l-strand gene-coding regions. Most changes are transitions or transversions, although several deletions/insertions also occur within the N-terminal domain of one of the coding regions. The substantial nucleotide homology results in a high degree of amino acid conservation in the predicted polypeptides encoded by the early region 2b genes. Two major open reading frames, corresponding to the Mr 87000 and Mr 140000 polypeptides of Ad2, are found in the l strand of Ad7 between genome coordinates 28.5 to 23.1 and 13.8, respectively. The r strand of the DNA in this region encodes the three leader segments joined to the 5' end of the most late viral mRNAs, and also encodes the i-leader segment found between the second and third leaders on some mRNAs. The positions of the donor and acceptor splice sites of the three leaders are conserved and can be identified by homology to Ad2. Only two of the unidentified open reading frames (URF) in Ad2 (Gingeras et al., J. Biol. Chem., in press) can be found in Ad7. URF1, encoding an Mr 13500 polypeptide at genome coordinate 17, is predominantly conserved in nucleotide and amino acid sequence, but contains one half as many arginine amino acids as does URF1 of Ad2. URF2, encoding an Mr 13600 protein which lies within the i-leader region, is not well conserved in either nucleotide or amino acid sequence.  相似文献   

17.
H van Ormondt  J Maat  C P van Beveren 《Gene》1980,11(3-4):299-309
The sequence of the leftmost 11.3% of the non-oncogenic human adenovirus type 5 (Ad5) DNA has been determined. This segment contains the entire early region E1 of the Ad5 genome which has been shown to be involved in in vitro transformation of non-permissive rodent cells (Van der Eb et al., 1980). From the DNA sequence, and from the mRNA sequence data obtained by Perricaudet et al, (1979, 1980) for the E1 mRNAs from the closely related adenovirus type 2 (Ad2), it is possible to predict the primary structure of the polypeptides encoded by this region. The function of these proteins in cell transformation is discussed. From the positions of mapped restriction endonuclease sites and termini of RNA segments in the nucleotide sequence the length of the Ad5 DNA is estimated to be 36.6 kb.  相似文献   

18.
19.
Hamster cell line HE5 has been established from primary LSH hamster embryo cells by transformation with adenovirus type 2 (Ad2) (1). Each cell contains two to three copies of integrated Ad2 DNA (2, 3). We cloned and sequenced the sites of junction between viral and cellular DNAs. The terminal 10 and 8 nucleotides of Ad2 DNA were deleted at the left and right sites of junction, respectively. The integrated viral DNA had an internal deletion between map units 35 and 82 on the Ad2 genome. At the internal site of deletion, the remaining viral sequences were linked via a GT dinucleotide of unknown origin. From HE5 DNA, the unoccupied sequence corresponding to the site of insertion was also cloned and sequenced. Part of this sequence was shown to be expressed as cytoplasmic RNA in HE5 and primary LSH hamster embryo cells. The viral DNA had been inserted into cellular DNA without deletions, rearrangements or duplications of cellular nucleotides at the site of insertion. Thus, insertion of Ad2 DNA appeared to have been effected by a mechanism different from that of bacteriophage lambda in Escherichia coli and from that of retroviral genomes in vertebrates. It was conceivable that the terminal viral protein (4) was somehow involved in integration either on a linear or a circularized viral DNA molecule.  相似文献   

20.
Physical organization of subgroup B human adenovirus genomes.   总被引:21,自引:13,他引:8       下载免费PDF全文
Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号