首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
血管内皮细胞和血管平滑肌细胞在结构和功能上关系密切,二者的相互关系在血管舒缩和血管壁结构的调节中起重要作用。本文观察了培养的小牛肺动脉内皮细胞(PAEC)和肺动脉平滑肌细胞(PASM)在细胞增殖方面的相互调节作用。混合培养的PAEC和PASM细胞的3H-TdR参入明显降低(P<0.001,与对照组相比)。无论向培养的PAEC和PASM中分别加入PASM和PAEC的条件培养基还是二者共培养时,均发现PAEC的3H-TdR参入明显降低,而PASM的3H-TdR明显升高(P<0.05,与对照组相比)。流式细胞测定也发现共培养时PAEC的G1期细胞增多,G2/M期细胞减少;而PASM的G1期细胞减少,G2/M期细胞增多。共培养的PASM细胞内cAMP增加,cGMP含量降低;而PAEC细胞的cAMP和cGMP含量均降低(P<0.01,与对照组相比)。上述结果提示,PAEC和PASM相互作用可能通过第二信使而调节它们本身的增殖  相似文献   

2.
粉防己碱抑制血管平滑肌细胞增殖及对HSP70和p53表达的影响   总被引:11,自引:0,他引:11  
目的:观察粉防己碱(Tet)对VSMC增殖的作用及对热应激蛋白70kd(HSP70)及其mRNA和抑癌基因p53mRNA的影响。方法:用内皮素建立培养的血管平滑肌细胞增殖模型。采用氚-胸腺嘧啶核苷([3H]TdR)掺入法流式细胞术,Western及Northernblot杂交方法。结果:Tet能逆转内皮素所致的[3H]TdR掺入量增多(P<0.01),阻止血管平滑肌细胞由静止期(G0/G1期)进入DNA合成期(S期)和有丝分裂期(G2/M期),并能逆转内皮素引起的HSP70及mRNA表达增强(P<0.01或P<0.05),p53抑癌基因mRNA表达减弱(P<0.05)。结论:Tet能抑制血管平滑肌细胞增殖,与HSP70及p53的调控有关  相似文献   

3.
本文采用自发性高血压大鼠(SHR)动脉平滑肌细胞培养,3H-胸腺嘧啶核苷(3H-TdR)和3H-亮氨酸(3H-Leucine)掺入方法,观察到用氨氯地平(Amlodipine)作用48小时后,与神经肽Y(NPY)组比较,其离体培养的SHR动脉平滑肌细胞3H-TdR掺入量降低50.5%,3H-Leucine掺入量降低56.5%。氨氯地平组与对照组比较其3H-TdR和3H-Leucine掺入量分别降低57.6%和32.3%。用NPY作用24小时后,与对照组比较动脉平滑肌细胞3H-TdR和3H-Leucine掺入量却分别增加20%和54.6%。而细胞计数均无显著性差异(P>0.05)。结果表明,氨氯地平能有效地抑制SHR血管平滑肌细胞(VSMC)的DNA和蛋白质合成,以及显著的抑制NPY引起的VSMC的DNA合成和蛋白质合成增加效应。提示氨氯地平在阻遏高血压致心血管壁肥厚的发生发展中起着不容忽视的作用  相似文献   

4.
Wang PY  Liu J  Yu ZH  Xu SM  Wang JY  Sun BY 《生理学报》1998,50(2):199-205
血管内皮细胞和血管平滑细胞在结构和功能上关系密切,两者的相互在与血管舒缩笔血和壁结构。本文观察了培养的小牛肺动脉内皮细胞(PAECs)和肺动平滑肌细胞(PASMCS)缺氧时在细胞增殖方面的相互影响。PASMCS常氧条件培养基(CM)可使PAECS的^3H-TdR掺入降低约58%,缺氧CM对PAECS的^3H-TdR掺入无明显的抑制作用;PAECS的常氧CM使PASMS的^3H-TdR掺入升高约60  相似文献   

5.
本工作观察到10-6—10-5mol/L去甲肾上腺素(NE)和10-7—10-5mol/L异丙基肾上腺素(ISO)可明显促进离体培养的血管平滑肌细胞(VSMC)的增殖和DNA的合成,并呈剂量依赖效应,该效应可为相应的受体阻断剂phentolamine(10-6mol/L)和proptanolol(10-5mol/L)所抑制;nifedipine(10-6mol/L)和veraromil(10-6mol/L)分别与同样浓度的NE同时加入细胞培养液中,其细胞计数和3H-TdR掺入率分别较单用NE时显著降低(P<0.01),nifedipine与verapamil亦明显抑制ISO促VSMC增殖的作用。  相似文献   

6.
本研究着重探讨表皮生长因子(EGF)对大鼠肺动脉的收缩作用及对肺动脉平滑肌细胞分裂增殖的影响。浓度为1×10-9-1×10-7mol/L的EGF可引起大鼠肺动脉剂量依赖性收缩(r=0.968,P<0,001),其Emax为100.6mg,EC50为11.96nmol/L。在同时存在0.5%胎牛血清(FCS)时,EGF能促进平滑肌细胞的3H-TdR参入率,该作用与剂量呈正相关(r=0.823,P<0.05),其EC50为6.5×1O-12mol/L。1×10-9mol/L的EGF+0.5%FCS能产生与10%FCS相当的促细胞分裂增殖能力(在培养的第1,3,5,7天,二者促分裂增殖能力相差不明显,P均>0.05,第9天时,前者大于后者,P<0.05)。1×10-9mol/LEGF单独存在时对平滑肌细胞未显示出明显的致分裂活性。上述作用提示ECF在某些肺血管病变如缺氧性肺动脉高压中可能有一定意义。  相似文献   

7.
肺动脉构形重建(structruralremodeling)是慢性肺心病的重要血管病变,但其发生机制至今未完全明了。病变以血管中膜平滑肌细胞肥大、增生和细胞外基质(包括纤维性与非纤维性成分)增多导致的血管壁增厚、血管腔狭窄为特征。本文用天狼星红-偏振光显微镜观察,真彩色全自动图像分析法,测量10例慢性肺心病尸检肺小动脉中膜厚度及中膜内Ⅰ、Ⅲ两型胶原的含量和所占的百分比。用3H-胸腺嘧院核苷和3H-脯氨酸掺入法,观察缺氧内皮细胞条件培养液(HECCM)对培养的肺动脉平滑肌细胞(PASMCS)DNA及胶原合成的影响。结果:(1)肺心病组437支肌型肺动脉平均中膜厚占血管直径的百分值高于对照组5±1.08%;(2)肺心病组的Ⅰ型和Ⅲ型胶原面积分别占中膜面积的54.62%和519%,而对照组两型胶原占中膜面积小于2%。(3)HECCM组平滑肌细胞的3H-TdR和3H-脯氨酸掺入量(cpm值),均明显高于常氧对照组(NECCM),两组相比,有显著性差异(P<0.01)。(4)细胞周期分析,HECCM组平滑肌细胞的G0/G1期细胞数百分值比NECCM组少28%,G2+M期细胞百分值则比NECCM组高30%。可以认为,缺  相似文献   

8.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

9.
5—羟色胺对肺动脉平滑肌细胞在缺氧条件下增殖的作用   总被引:2,自引:1,他引:1  
刘健  王培勇 《生理学报》1997,49(3):292-298
本研究应用细胞培养、^3H-TdR掺入,核酸分子杂交、免疫组织化学染色技术,探讨无氧(0%O2+95%N2+5%CO2)和/或低氧(2.5 ̄3%O2+92%N2+5%CO2)对新生小牛肺动脉平滑肌细胞增殖和5-羟色胺转载体基因表达的影响。结果表明:无氧24h可刺激PASM的DNA合成,^3H-TdR的掺入增加(P〈0.05),加入5-羟色胺能非常显著地促进无氧PASM增殖(P〈0.001),而对常  相似文献   

10.
Ye H  Hao TL  Jin XR 《生理学报》2000,52(5):355-359
用噻唑蓝比色法(MTT法)、H^3-胸腺嘧啶核苷(H^3-TdR)掺入法和流式细胞术,观察红细胞生成素(EPO)3’端增强子片段对培养的猪肺动脉平滑肌细胞(PASMCs)的内皮依赖性和非内皮依赖性低氧性增殖的影响。结果为:(1)低氧24h后PASMCs明显增殖,转入野生型EPO3’端增强子片段可被抑制,而转入突变型片段无此作用;(2)肺动脉内皮细胞(PAECs)低氧24h,其条件培养液有明显的促P  相似文献   

11.
Vascular endothelial Flt-1 and other stem cell markers are variably expressed in vascular smooth muscle cells (SMCs) during normal and pathological conditions, but their biological role remains uncertain. In normal rat aorta, rare flt-1+ and c-kit+ SMCs were detected. Fifteen days after injury, 61.8+3.8, 45.7+3% of the intimal cells resulted flt-1+ and c-kit+ and expressed low level of alpha-smooth muscle actin; CD133+ cells were 5.6+0.7%. BrDU+/flt-1+ largely predominated in the neointima, whereas BrDU+/CD133+ cells were rare. Forty-five and sixty days after injury, intimal proliferation such as BrDU+ cells was greatly reduced. After sixty days, intimal stem marker expression had almost disappeared whereas alpha-smooth muscle actin was restored. Flk-1 and Oct-4 SMC immunodection was consistently negative. In vitro, intimal cells obtained fifteen days after injury exhibited an epithelioid phenotype and increased flt-1 and c-kit protein and mRNA and low smooth muscle markers compared to spindle-shaped medial and intimal SMCs obtained after sixty days. Epithelioid clones, independently from layer of origin, were similar in stem cell marker expression. The anti-flt-1 blocking antibody added to epithelioid SMC cultures reduced serum-deprived apoptosis and migration but not PDGF-BB-induced proliferation, and increased cell-populated collagen lattice contraction. In conclusion, stem marker expression in vascular SMCs was variable, chronologically regulated and prevailed in epithelioid populations and clones; among stem markers, flt-1 expression critically regulates intimal SMC response to microenviromental changes.  相似文献   

12.
13.
The growth factor signaling mechanisms responsible for neointimal smooth muscle cell (SMC) proliferation and accumulation, a characteristic feature of many vascular pathologies that can lead to restenosis after angioplasty, remain to be identified. Here, we examined the contribution of fibroblast growth factor receptors (FGFRs) 2 and 3 as well as novel fibroblast growth factors (FGFs) to such proliferation. Balloon catheter injury to the rat carotid artery stimulated the expression of two distinctly spliced FGFR-2 isoforms, differing only by the presence or absence of the acidic box, and two distinctly spliced FGFR-3 isoforms containing the acidic box and differing only by the presence of either the IIIb or IIIc exon. Post-injury arterial administration of recombinant adenoviruses expressing dominant negative mutant forms of these FGFRs were used to assess the roles of the endogenous FGFR isoforms in neointimal SMC proliferation. Dominant negative FGFR-2 containing the acidic box inhibited such proliferation by 40%, whereas the dominant negative FGFR-3 forms had little effect. Expression of FGF-9, known to be capable of binding to all four neointimal FGFR-2/-3 isoforms, was abundant within the neointima. FGF-9 markedly stimulated both the proliferation of neointimal SMCs and the activation of extracellular signal-related kinases 1/2, effects which were abrogated by the administration of antisense FGF-9 oligonucleotides to injured arteries and the expression of the dominant negative FGFR-2 adenovirus in cultured neointimal SMCs. These studies demonstrate that, although multiple FGFRs are induced in neointimal SMCs following arterial injury, specific interactions between distinctly spliced FGFR-2 isoforms and FGF-9 contribute to the proliferation of these SMCs.  相似文献   

14.
Phenotypic modulation, migration and proliferation of vascular smooth muscle cells (SMCs) are major events in restenosis after percutaneous transluminal angioplasty. Surface cell adhesion molecules, essential to morphogenesis and maintenance of adult tissue architecture, are likely to be involved, but little is known about cell adhesion molecules expressed on SMCs. T-cadherin is a glycosyl phosphatidylinositol-anchored member of the cadherin superfamily of adhesion molecules. Although highly expressed in vascular and cardiac tissues, its function in these tissues is unknown. We previously reported increased expression of T-cadherin in intimal SMCs in atherosclerotic lesions and proposed a role for T-cadherin in phenotype control. Here we performed immunohistochemical analysis of spatial and temporal changes in vascular T-cadherin expression following balloon catheterisation of the rat carotid artery. T-cadherin expression in SMCs markedly increases in the media early (1-4 days) after injury, and later (day 7-28) in forming neointima, especially in its preluminal area. Staining for monocyte/macrophage antigen ED-1, proliferating cell nuclear antigen and smooth muscle alpha-actin revealed that spatial and temporal changes in T-cadherin level coincided with the peak in cell migration and proliferation activity during neointima formation. In colchicine-treated cultures of rat aortic SMCs T-cadherin expression is increased in dividing M-phase cells but decreased in non-dividing cells. Together the data support an association between T-cadherin expression and SMC phenotype.  相似文献   

15.
Establishing an effective method to improve stem cell differentiation is crucial in stem cell transplantation. Here we aimed to explore whether and how sodium butyrate (NaB) induces rat bone marrow mesenchymal stem cells (MSCs) to differentiate into bladder smooth muscle cells (SMCs). We found that NaB significantly suppressed MSC proliferation and promoted MSCs differentiation into SMCs, as evidenced by the enhanced expression of SMC specific genes in the MSCs. Co-culturing the MSCs with SMCs in a transwell system promoted the differentiation of MSCs into SMCs. NaB again promoted MSC differentiation in this system. Furthermore, NaB enhanced the acetylation of SMC gene-associated H3K9 and H4, and decreased the expression of HDAC2 and down-regulated the recruitment of HDAC2 to the promoter regions of SMC specific genes. Finally, we found that NaB significantly promoted MSC depolarization and increased the intracellular calcium level of MSCs upon carbachol stimulation. These results demonstrated that NaB effectively promotes MSC differentiation into SMCs, possibly by the marked inhibition of HDAC2 expression and disassociation of HDAC2 recruitment to SMC specific genes in MSCs, which further induces high levels of H3K9ace and H4ace and the enhanced expression of target genes, and this strategy could potentially be applied in clinical tissue engineering and cell transplantation.  相似文献   

16.
17.
Vascular smooth muscle cells (SMCs) undergo morphological and phenotypic changes when cultured in vitro. To investigate whether SMC morphology regulates SMC functions, bovine aortic SMCs were grown on micropatterned collagen strips (50-, 30-, and 20-microm wide). The cell shape index and proliferation rate of SMCs on 30- and 20-microm strips were significantly lower than those on non-patterned collagen (control), and the spreading area was decreased only for cells patterned on the 20-microm strips, suggesting that SMC proliferation is dependent on cell shape index. The formation of actin stress fibers and the expression of alpha-actin were decreased in SMCs on the 20- and 30-microm collagen strips. SMCs cultured on micropatterned biomaterial poly-(D,L-lactide-co-glycolide) (PLGA) with 30-microm wide grooves also showed lower proliferation rate and less stress fibers than SMCs on non-patterned PLGA. Our findings suggest that micropatterned matrix proteins and topography can be used to control SMC morphology and that elongated cell morphology decreases SMC proliferation but is not sufficient to promote contractile phenotype.  相似文献   

18.
Platelet-derived growth factor (PDGF), a smooth muscle cell (SMC) mitogen, and heparin-like glycosaminoglycans, known inhibitors of SMC growth and migration, were found to regulate thrombospondin synthesis and matrix deposition by cultured rat aortic SMC. The synthesis and distribution of thrombospondin was examined in growth-arrested SMCs, in PDGF-stimulated SMCs, and in heparin-treated SMCs using metabolic labeling and immunofluorescence techniques. Thrombospondin synthesis in response to purified PDGF occurred within 1 h after addition of growth factor to growth-arrested SMCs, peaked at 2 h, and returned to baseline levels by 5 h. The induction of synthesis of thrombospondin by PDGF was dose dependent, with a maximal effect observed at 2.5 ng/ml. Actinomycin D (2 micrograms/ml) inhibited thrombospondin induction by PDGF, suggesting a requirement for new RNA synthesis. In the presence of heparin and related polyanions, the incorporation of thrombospondin into the SMC extracellular matrix was markedly reduced. This effect was dose dependent with a maximal effect observed at a heparin concentration of 1 microgram/ml. Heparin did not affect the ability of SMCs to synthesize thrombospondin in response to PDGF. We interpret these data to suggest a role for thrombospondin in the SMC proliferative response to PDGF and in the regulation of SMC growth and migration by glycosaminoglycans.  相似文献   

19.
A hallmark of smooth muscle cell (SMC) phenotypic switching is suppression of SMC marker gene expression. Although myocardin has been shown to be a key regulator of this process, the role of its related factors, MKL1 and MKL2, in SMC phenotypic switching remains unknown. The present studies were aimed at determining if: 1) MKL factors contribute to the expression of SMC marker genes in cultured SMCs; and 2) platelet-derived growth factor-BB (PDGF-BB)-induced repression of SMC marker genes is mediated by suppression of MKL factors. Results of gain- and loss-of-function experiments showed that MKL factors regulated the expression of single and multiple CArG [CC(AT-rich)(6)GG]-containing SMC marker genes, such as smooth muscle (SM) alpha-actin and telokin, but not CArG-independent SMC marker genes such as smoothelin-B. Treatment with PDGF-BB reduced the expression of CArG-containing SMC marker genes, as well as myocardin expression in cultured SMCs, while it had no effect on expression of MKL1 and MKL2. However, of interest, PDGF-BB induced the dissociation of MKL factors from the CArG-containing region of SMC marker genes, as determined by chromatin immunoprecipitation assays. This dissociation was caused by the competition between MKL factors and phosphorylated Elk-1 at early time points, but subsequently by the reduction in acetylated histone H4 levels at these promoter regions mediated by histone deacetylases, HDAC2, HDAC4, and HDAC5. Results provide novel evidence that PDGF-BB-induced repression of SMC marker genes is mediated through combinatorial mechanisms, including downregulation of myocardin expression and inhibition of the association of myocardin/MKL factors with CArG-containing SMC marker gene promoters.  相似文献   

20.
Summary Distinct, sequential events occurring during the destruction and simultaneous regrowth of human arterial smooth muscle cell (SMC) cultures infected with cytomegalovirus (CMV, AD169 strain) were characterized. The events were influenced by the typical phenotypic diversity reflecting relative states of differentiation of the SMC cultures. Progenitors of regeneration were a surviving population of small, undifferentiated or relatively undifferentiated SMCs. As these cells reached confluence focally, the number of cells reactive with antismooth muscle serum, i.e. differentiating, increased, and in some postconfluent foci the organization of SMCs resembled the topography of uninfected cultures. Thus, infected SMC cultures had a limited capacity to repopulate, to organize typically, and to differentiate. However, continuing cytopathic effects gradually destroyed much of the regrowth, and a relatively large, nondividing SMC with prominent cytoplasmic filaments, similar to SMCs in terminal, uninfected cultures, predominated. Infected cultures consisting overwhelmingly of the large terminal phenotype were far less productive of infectious CMV than cultures populated by SMCs with continuing capacity to divide. Gradually, cultures consisting of the terminal phenotype deteriorated as a result of sporadic cytopathic effects of CMV and an effect resembling “senescent” degeneration in uninfected, nondividing cultures in late passage. The infected, terminal phenotype could be a latent or persistent source of CMV antigen or nucleic acid-positive cells detected by different investigators in normal and in atheromatous, human tissue, assuming that it exists and survives for an extended period in vivo after infection of vascular SMC. The derivation of smooth muscle cell lines used in this investigation was supported through National Research and Demonstration Center grant HL-17269-07 from the National Heart, Lung and Blood Institute, Bethesda, MD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号