首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Wheat gliadin proteins are coded by clusters of genes (complex loci) located on the short arms of chromosomes of homoeologous groups 1 and 6 in bread (6x) and durum (4x) wheats. The proteins expressed by the various complex loci have been designated gliadin blocks. In a survey of accessions from the Germplasm Institute (C.N.R., Bari, Italy) collection, several different accessions have been found that lack particular blocks of proteins (null alleles). In some bread wheat accessions, seeds do not express gliadins that are coded by chromosomes 1D and 6A in normal cultivars. Similarly, some durum wheat accessions lack -gliadin components coded for by genes on chromosomes 1A and 1B. The missing proteins do not result from the absence of whole chromosomes, but may be the consequence of partial deletion of these genes at a complex locus or result from their silencing.  相似文献   

2.
3.
Erenoglu  B.  Cakmak  I.  Römheld  V.  Derici  R.  Rengel  Z. 《Plant and Soil》1999,209(2):245-252
Effect of zinc (Zn) nutritional status on uptake of inorganic 65Zn was studied in rye (Secale cereale, cv. Aslim), three bread wheat (Triticum aestivum, cvs. Dagdas, Bezostaja, BDME-10) and durum wheat (Triticum durum, cv. Kunduru-1149) cultivars grown for 13 days in nutrient solution under controlled environmental conditions. The cultivars were selected based on their response to Zn deficiency and to Zn fertilization in calcareous soils under field conditions. When grown in Zn-deficient calcareous soil in the field, the rye cultivar had the highest, and the durum wheat the lowest Zn efficiency. Among the bread wheats, BDME-10 showed higher susceptibility to Zn deficiency and Bezostaja and Dagdas were less affected by Zn deficiency. Similarly to field conditions, in nutrient solution visual Zn deficiency symptoms (i.e. necrotic lesions on leaf blade) appeared to be more severe in Kunduru-1149 and BDME-10 and less severe in rye cultivar Aslim. Under Zn deficiency, shoot concentrations of Zn were similar between all cultivars. Cultivars with adequate Zn supply did not differ in uptake and root-to-shoot translocation rate of 65Zn, but under Zn deficiency there were distinct differences; rye showed the highest rate of Zn uptake and the durum wheat the lowest. In the case of bread wheat cultivars, 65Zn uptake rate was about the same and not related to their differential Zn efficiency. Under Zn deficiency, rye had the highest rate of root-to-shoot translocation of 65Zn, while all bread and durum wheat cultivars were similar in their capacity to translocate 65Zn from roots to shoots. When Zn2+ activity in uptake solution ranged between 117 p M and 34550 pM, Zn-efficient and Zn-inefficient bread wheat genotypes were again similar in uptake and root-to-shoot translocation rate of 65Zn. The results indicate that high Zn efficiency of rye can be attributed to its greater Zn uptake capacity from soils. The inability of the durum wheat cultivar Kunduru-1149 to have a high Zn uptake capacity seems to be an important reason for its Zn inefficiency. Differential Zn efficiency between the bread wheat cultivars used in this study is not related to their capacity to take up inorganic Zn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.   总被引:3,自引:0,他引:3  
Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.  相似文献   

6.
Leaf micromorphological traits and some physiological parameters with potential relevance to drought tolerance mechanisms were investigated in four selected winter wheat varieties. Plants were subjected to two cycles of drought treatment at anthesis. Yield components confirmed contrasting drought-sensitive and -tolerant behavior of the genotypes. Drought tolerance was associated with small flag leaf surfaces and less frequent occurrence of stomata. Substantial variation of leaf cuticular thickness was found among the cultivars. Thin cuticle coincided with drought sensitivity and correlated with a high rate of dark-adapted water loss from leaves. Unlike in Arabidopsis, thickening of the cuticular matrix in response to water deprivation did not occur. Water stress induced epicuticular wax crystal depositions preferentially on the abaxial leaf surfaces. According to microscopy and electrolyte leakage measurements from leaf tissues, membrane integrity was lost earlier or to a higher extent in sensitive than in tolerant genotypes. Cellular damage and a decline of relative water content of leaves in sensitive cultivars became distinctive during the second cycle of water deprivation. Our results indicate strong variation of traits with potential contribution to the complex phenotype of drought tolerance in wheat genotypes. The maintained membrane integrity and relative water content values during repeated water limited periods were found to correlate with drought tolerance in the selection of cultivars investigated.  相似文献   

7.
Response of twenty eight cultivars of durum wheat (Triticum turgidum var. durum) to immature embryo culture, callus production and in vitro salt tolerance was evaluated. For assessment of cultivars to salt tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1% w/v) added to the culture medium during two subsequent subcultures (4 weeks each). Comparison of cultivars for callus induction from immature embryo was based on callus induction frequency and fresh weight growth of callus (FWG). While, for salt tolerance, the relative fresh weight growth (RFWG) and necrosis percent of callus were used. There were significant differences among cultivars for potential of regeneration from immature embryo, and ‘Shahivandi’ a native durum wheat cultivar originating from western Iran was superior among the cultivars tested. The FWG distinguished cultivars more than callus induction frequency did for callus induction evaluation. Hence, a range of FWG from 1.23 to 14.65 g was observed in ‘Mexical-75’ and ‘Omrabi-5’ cultivars, respectively. Growing calli derived from cultivars ‘PI 40100’ and ‘Dipper-6’ showed superiority for tolerating salinity under in vitro conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

9.
10.
The effect of the zinc (Zn) nutritional status on the rate of phytosiderophore release was studied in nutrient solution over 20 days in four bread wheat (Triticum aestivum cvs. Kiraç-66, Gerek-79, Aroona and Kirkpinar) and four durum wheat (Triticum durum cvs. BDMM-19, Kunduru-1149, Kiziltan-91 and Durati) genotypes differing in Zn efficiency.Visual Zn deficiency symptoms, such as whitish-brown necrosis on leaves and reduction in plant height appeared first and more severe in Zn-inefficient durum wheat genotypes Kiziltan-91, Durati and Kunduru-1149. Compared to the bread wheat genotypes, all durum wheat genotypes were more sensitive to Zn deficiency. BDMM-19 was the least affected durum wheat genotype. Among the bread wheat genotypes, Kirkpinar was the most sensitive genotype. In all genotypes well supplied with Zn, the rate of phytosiderophore release was very low and did not exceed 1 mol 32 plants-1 3h-1, or 0.5 mol g-1 root dry wt 3h-1. However, under Zn deficiency, with the onset of visual Zn deficiency symptoms, the release of phytosiderophores was enhanced in bread wheat genotypes up to 7.5 mol 32 plants-1 3h-1, or 9 mol g-1 root dry wt 3h-1, particularly in Zn-efficient Kiraç-66, Gerek-79 and Aroona. In contrast to bread wheat genotypes, phytosiderophore release in Zn-deficient durum wheat genotypes remained at a very low rate. Among the durum wheat genotypes BDMM-19 had highest rate of phytosiderophore release. HPLC analysis of root exudates showed that 2-deoxymugineic acid (DMA) is the dominating phytosiderophore released from roots of Zn-efficient genotypes. In root extracts concentration of DMA was also much higher in Zn-efficient than in inefficient genotypes. The results demonstrate that enhanced synthesis and release of phytosiderophores at deficient Zn supply is involved in Zn efficiency in wheat genotypes. It is suggested that the expression of Zn efficiency mechanism is causally related to phytosiderophore-mediated enhanced mobilization of Zn from sparingly soluble Zn pools and from adsorption sites, both in the rhizosphere and plants.  相似文献   

11.
The allelic diversity at four gliadin-coding loci was studied in modern cultivars of the spring and winter durum wheat Triticum durum Desf. Comparative analysis of the allelic diversity showed that the gene pools of these two types of durum wheat, having different life styles, were considerably different. For the modern spring durum wheat cultivars, a certain reduction of the genetic diversity was observed compared to the cultivars bred in the 20th century.  相似文献   

12.
Plant pathogens emerge in agro-ecosystems following different evolutionary mechanisms over different time scales. Previous analyses based on sequence variation at six nuclear loci indicated that Mycosphaerella graminicola diverged from an ancestral population adapted to wild grasses during the process of wheat domestication approximately 10,500 years ago. We tested this hypothesis by conducting coalescence analyses based on four mitochondrial loci using 143 isolates that included four closely related pathogen species originating from four continents. Pathogen isolates from bread and durum wheat were included to evaluate the emergence of specificity towards these hosts in M. graminicola. Although mitochondrial and nuclear genomes differed greatly in degree of genetic variability, their coalescence was remarkably congruent, supporting the proposed origin of M. graminicola through host tracking. The coalescence analysis was unable to trace M. graminicola host specificity through recent evolutionary time, indicating that the specificity towards durum or bread wheat emerged following the domestication of the pathogen on wheat.  相似文献   

13.
Long terminal repeat retrotransposons are the most abundant mobile elements in the plant genome and play an important role in the genome reorganization induced by environmental challenges. Their success depends on the ability of their promoters to respond to different signaling pathways that regulate plant adaptation to biotic and abiotic stresses. We have isolated a new Ty1-copia-like retrotransposon, named Ttd1a from the Triticum durum L. genome. To get insight into stress activation pathways in Ttd1a, we investigated the effect of salt and light stresses by RT-PCR and S-SAP profiling. We screened for Ttd1a insertion polymorphisms in plants grown to stress and showed that one new insertion was located near the resistance gene. Our analysis showed that the activation and mobilization of Ttd1a was controlled by salt and light stresses, which strengthened the hypothesis that stress mobilization of this element might play a role in the defense response to environmental stresses.  相似文献   

14.
Summary The present study describes a cytological stable alien chromosome translocation in tetraploid durum wheat. By crossing the hexaploid 1BL/1RS wheat-rye translocation line Veery to the tetraploid durum wheat cultivar Cando it was possible to select a 28 chromosomic strain homozygous for the 1BL/1RS translocation. The disease resistance potential of the short arm of rye chromosome 1R, which has been widely introduced in many hexaploid bread wheat cultivars could be now also used for the improvement of durum wheat.  相似文献   

15.
Almansouri  M.  Kinet  J.-M.  Lutts  S. 《Plant and Soil》2001,231(2):243-254
In order to determine the relative importance of ionic toxicity versus the osmotic component of salt stress on germination in durum wheat (Triticum durum Desf.), seeds of three cultivars differing in their salt and drought resistance (Omrabi-5, drought-resistant; Belikh, salt-resistant and Cando, salt-sensitive) were incubated in various iso-osmotic solutions of NaCl, mannitol and polyethylene-glycol (PEG) (osmotic potential of –0.15 (control solution) –0.58, –1.05 or –1.57 MPa). Moderate stress intensities only delayed germination, whereas the highest concentration of NaCl and PEG reduced final germination percentages. PEG was the most detrimental solute, while mannitol had no effect on final germination percentages. All osmotica reduced endosperm starch and soluble sugars content as well as -amylase activities recorded after 48 h of treatment while -amylase activities were, in contrast, slightly stimulated in all cultivars. Deleterious effects of NaCl and PEG were higher on isolated embryos germinated onto an in vitro Linsmaier and Skoog (LS) medium comparatively to whole seeds. All PEG-treated embryos, however, recovered after the stress relief while NaCl-treated embryos exhibited a lower rate of recovery and some extent of abnormal germination after rinsing. It was concluded that stress inhibition of germination could not be attributed to an inhibition of mobilisation of reserves and that the main effect of PEG occurred via an inhibition of water uptake while detrimental effects of NaCl may be linked to long-term effects of accumulated toxic ions. The behaviour of the three cultivars during germination did not fully reflect their mean level of putative stress resistance in field conditions and germination is, therefore, not recommended as a reliable selection criterion for breeding purposes.  相似文献   

16.
Zheng Y  Jia A  Ning T  Xu J  Li Z  Jiang G 《Journal of plant physiology》2008,165(14):1455-1465
A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.  相似文献   

17.
 Seventy nine microsatellite markers from hexaploid bread wheat (T. aestivum L.) were integrated into a genetic linkage map of durum wheat (T. turgidum ssp. durum (Desf.) Huns.) created by RFLP segregation data from a population of 65 recombinant inbred lines. The results indicate a relatively even distribution of microsatellite loci and demonstrate that microsatellite markers from hexaploid wheat provide an excellent source of molecular markers for use in the genetics and breeding of durum wheat. Received: 16 July 1998 / Accepted: 13 October 1998  相似文献   

18.
Field studies have shown that the addition of Zn to Cd-containing soils can help reduce accumulation of Cd in crop plants. To understand the mechanisms involved, this study used 109Cd and 65Zn to examine the transport interactions of Zn and Cd at the root cell plasma membrane of bread wheat ( Triticum aestivum L.) and durum wheat ( Triticum turgidum L. var. durum ). Results showed that Cd2+ uptake was inhibited by Zn2+ and Zn2+ uptake was inhibited by Cd2+. Concentration-dependent uptake of both Cd2+ and Zn2+ consisted of a combination of linear binding by cell walls and saturable, Michaelis-Menten influx across the plasma membrane. Saturable influx data from experiments with and without 10 µm concentrations of the corresponding inhibiting ion were converted to double reciprocal plots. The results revealed a competitive interaction between Cd2+ and Zn2+, confirming that Cd2+ and Zn2+ share a common transport system at the root cell plasma membrane in both bread and durum wheat. The study suggests that breeding or agronomic strategies that aim to decrease Cd uptake or increase Zn uptake must take into account the potential accompanying change in transport of the competing ion.  相似文献   

19.
Modulation of water relations, activities of antioxidant enzymes and ion accumulation was assessed in the plants of two wheat cultivars S-24 (salt tolerant) and MH-97 (moderately salt sensitive) subjected to saline conditions and glycinebetaine (GB) applied foliarly. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were applied to the wheat plants at the vegetative growth stage. Leaf water potential, leaf osmotic potential and turgor potential were decreased due to salt stress. Salt stress increased the Na+ and Cl accumulation coupled with a decrease in K+ and Ca2+ in the leaves and roots of both cultivars thereby decreasing tissue K+/Na+ and Ca2+/Na+ ratios. Furthermore, salt stress decreased the activities of superoxide dismutase (SOD), whereas it increased the activities of catalase (CAT) and peroxidase (POD) in both wheat cultivars. However, accumulation of GB in the leaves of both wheat cultivars was consistently increased with an increase in concentration of exogenous GB application under both non-saline and saline conditions. Accumulation of Na+ was decreased with an increase in K+ accumulation upon a consistent increase in GB accumulation under salt stress conditions thereby resulting in better K+/Na+ and Ca2+/Na+ ratios in the leaves and roots. High accumulation of GB and K+ mainly contributed to osmotic adjustment, which is one of the factors known to be responsible for improving growth and yield under salt stress. The activities of all antioxidant enzymes, SOD, CAT and POD were enhanced by GB application in cv. MH-97 under saline conditions, whereas all these except SOD were reduced in cv. S-24. It is likely that both applied GB and intrinsic SOD scavenged ROS in the tolerant cultivar thereby resulting into low activities of CAT and POD enzymes under salt stress. In conclusion, the adverse effects of salt stress on wheat can be alleviated by the exogenous application of 100 mM GB by modulating activities of antioxidant enzymes and changes in water relations and ion homeostasis. Furthermore, effectiveness of GB application on regulation of activities of antioxidant enzymes was found to be cultivar-specific.  相似文献   

20.
The occurrence and distribution of seedling resistance genes and the presence of adult plant resistance to powdery mildew, was investigated in a collection of 155 Nordic bread wheat landraces and cultivars by inoculation with 11 powdery mildew isolates. Eighty-nine accessions were susceptible in the seedling stage, while 66 accessions showed some resistance. Comparisons of response patterns allowed postulation of combinations of genes Pm1a, Pm2, Pm4b, Pm5, Pm6, Pm8 and Pm9 in 21 lines. Seedling resistance was three times more frequent in spring wheat than in winter wheat. The most commonly postulated genes were Pm1a+Pm2+Pm9 in Sweden, Pm5 in Denmark and Norway, and Pm4b in Finland. Forty-five accessions were postulated to carry only unidentified genes or a combination of identified and unidentified genes that could not be resolved by the 11 isolates. Complete resistance to all 11 isolates was present in 18 cultivars. Adult plant resistance was assessed for 109 accessions after natural infection with a mixture of races. In all, 92% of the accessions developed less than 3-5% pathogen coverage while nine lines showed 10-15% infected leaf surface. The characterization of powdery mildew resistance in Nordic wheat germplasm could facilitate the combination of resistance genes in plant breeding programmes to promote durability of resistance and disease management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号