首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 437 毫秒
1.
林窗内光照强度的测量方法   总被引:3,自引:0,他引:3  
林窗内光强存在复杂的时空变化,对植物更新和生长有着重要影响,因此,林窗光照强度的快速测量方法是生态学家十分关注的问题.目前,测量林窗光强的方法可分为3类:(1)直接测量法采用光量子探头等仪器直接测量光强,但测量林窗光强异质性时十分费时费力.(2)模型估测法通过几何计算可快速估测林窗任意位置光强,但模型估测法将林窗简化为圆柱体或椭圆柱体,并忽略了许多林窗光强的影响因素,这极大影响了它的测量精度.(3)相片法采用半球面影像等相片间接计算相片拍摄点的光强,但测量林窗光强异质性时需要在林窗内拍摄大量相片;相片法具有较高精度,可区分直射光和散射光,其中,基于半球面影像的林窗光指数(gap light index)精度最高,使用广泛;基于几何计算的林窗光指数不仅具有较高精度,且可以快速测量林窗任意位置光强,该方法适用于林窗光强水平分布格局、垂直结构以及光组成成分(直射光和散射光)特征研究.  相似文献   

2.
天童常绿阔叶林林窗的地形分布格局   总被引:2,自引:0,他引:2  
为探究多维地形因素对林窗分布的影响,以天童20 hm2常绿阔叶林动态监测样地内的林窗为对象,结合地理信息系统软件,分析了林窗空隙率、林窗密度以及林窗面积在海拔、坡度、坡向、坡形、坡位5种地形因子下的分布格局.结果表明: 该样地林窗空隙率为13.1%,林窗密度为9.5个·hm-2,林窗平均面积为137.82 m2;因高海拔台风干扰的强度较大,高海拔段(≥500 m)林窗的空隙率和密度显著大于中低海拔段(<500 m);台风带来的强降雨极易引起小范围滑坡,使得沟谷的林窗空隙率和密度显著大于侧坡,林窗平均面积显著大于侧坡和山脊.台风及其带来的强降雨是造成林窗在海拔及坡位梯度上具有显著性差异的主要原因.  相似文献   

3.
为探究多维地形因素对林窗分布的影响,以天童20 hm2常绿阔叶林动态监测样地内的林窗为对象,结合地理信息系统软件,分析了林窗空隙率、林窗密度以及林窗面积在海拔、坡度、坡向、坡形、坡位5种地形因子下的分布格局.结果表明: 该样地林窗空隙率为13.1%,林窗密度为9.5个·hm-2,林窗平均面积为137.82 m2;因高海拔台风干扰的强度较大,高海拔段(≥500 m)林窗的空隙率和密度显著大于中低海拔段(<500 m);台风带来的强降雨极易引起小范围滑坡,使得沟谷的林窗空隙率和密度显著大于侧坡,林窗平均面积显著大于侧坡和山脊.台风及其带来的强降雨是造成林窗在海拔及坡位梯度上具有显著性差异的主要原因.  相似文献   

4.
基于机载激光雷达的中亚热带常绿阔叶林林窗特征   总被引:1,自引:0,他引:1  
刘峰  谭畅  王红  张江  万颖  龙江平  刘芮希 《生态学杂志》2015,26(12):3611-3618
机载激光雷达(LiDAR)是一种新型主动式遥感技术,能直接获取多尺度高精度的冠层三维结构信息,将其推广到森林干扰生态学领域,可为林窗研究提供应用支撑.以湖南中亚热带常绿阔叶林为研究对象,利用小光斑LiDAR数据进行林窗识别和几何特征估测.选择合适的分辨率和内插方法生成冠层高程模型,采用计算机图形学方法估测林窗面积、边界木高度和形状指数,并进行野外观测验证.结果表明: 林窗识别率为94.8%,主要影响因素是林窗面积和林窗形成木类型;估测的林窗面积和边界木高与野外观测值呈较强线性相关,R2值分别为0.962和0.878,其中估测的林窗面积平均比野外观测值高19.9%,估测的林窗边界木高度平均比野外观测值低9.9%;区域内林窗密度为12.8个·hm-2,占森林面积13.3%;林窗面积、边界木高和形状指数的平均值分别为85.06 m2、15.33 m和1.71,区域内多为较小面积、边缘效应不太显著的林窗.
  相似文献   

5.
辽东山区天然次生林两个不同坡向林窗光温空间分布特征   总被引:3,自引:0,他引:3  
为探讨辽东山区次生林林窗干扰特征,对不同坡向雪/风干扰后形成林窗内的光温空间分布特征进行了研究。结果表明:东北和东南坡向的林窗中,各时段光量子通量密度(PPFD)和气温的空间分布格局类似但大小并不相同;8:00—10:00 PPFD最高值均出现在林窗中央偏西(东北坡169μmol·m-2·s-1,东南坡350μmol·m-2·s-1),11:00—13:00PPFD最高值出现在林窗中央偏北侧(东北坡234μmol·m-2·s-1,东南坡400μmol·m-2·s-1),而14:00—16:00均以林窗东侧PPFD最大(东北坡74μmol·m-2·s-1,东南坡56μmol·m-2·s-1),且两个坡向的PPFD在各时段大小差异显著(P0.05)。两个坡向林窗内平均气温的空间分布均表现为8:00—10:00西高东低,11:00—13:00北高南低,14:00—16:00东高西低的趋势,而在各时段的差异为8:00—10:00、11:00—13:00东北坡气温显著低于东南坡(P0.01),14:00—16:00则显著高于东南坡(P0.01)。上述结果表明,林窗坡向及林窗内位置不同,使其光温环境发生异质性,进而影响到林窗区域种子萌发、幼苗生长发育及植物种群分布等,最终影响到森林的更新。  相似文献   

6.
欧建德  吴志庄  罗宁 《生态学杂志》2016,27(10):3098-3104
为明确林窗大小对南方红豆杉生长、形质的影响以及珍贵用材培育成效,测定福建省明溪杉木林中25个林窗样地的南方红豆杉的生长、干形和分枝等指标,分析林窗大小与生长、干形和分枝情况之间的关系,将25个林窗样地按不同面积划分为25~50 m2 (Ⅰ)、50~75 m2 (Ⅱ)、75~100 m2 (Ⅲ)、100~125 m2 (Ⅳ)、125~150 m2 (Ⅴ)5种林窗类型,运用层次分析法构建了珍贵用材评价指标体系,采用多目标决策法评价5种林窗类型的综合效果.结果表明: 林窗大小显著影响南方红豆杉树高、胸径、冠幅、杈干率、通直度、圆满度、尖削度、径高比、枝下高、枝间距、最大侧枝直径等11个生长和形质指标以及综合评价值. 林窗Ⅰ、Ⅱ类型显著促进南方红豆杉的树高、胸径、冠幅的生长.在干形指标方面,林窗Ⅰ、Ⅱ类型显著抑制分杈率和尖削度,提高通直度;林窗Ⅱ类型显著提高圆满度和径高比.林窗Ⅰ、Ⅱ类型显著提高枝下高,降低最大侧枝直径;林窗Ⅰ类型显著提高枝间距. 林窗Ⅰ、Ⅱ类型显著提高珍贵用材综合评价值.在杉木林内南方红豆杉的培育过程中,控制采伐强度、创建面积25~75 m2的林窗可提高培育效果.  相似文献   

7.
林窗几何特征的测定方法   总被引:1,自引:0,他引:1  
林窗面积、形状及边界木高是决定林窗环境异质性的3个林窗几何特征,影响林窗内植物更新。林窗几何特征的快速测量方法是林窗研究的基础,测量方法可分为2类:基于地面实际测量的地面法和基于林窗林冠照片的相片法。地面法费时费力,受人为因素影响大,可测量林冠林窗和扩展林窗的面积,但不能测量林窗形状和边界木高。相片法具有简单、客观、可重复的优点,但仅适用于林冠林窗。相片法共有5种:"平面相片法"、"航片法"、"半球面影像法"、"双半球面影像法"和"改进的半球面影像法"。前3种测量方法只能测量林冠林窗面积;"改进的半球面影像法"可测量林冠林窗面积和形状,且精度高于前3种相片法,但所需参数最多;"双半球面影像法"可测量林窗面积、形状及边界木高这3个林窗几何特征,且精度较高,但拍摄要求较高。  相似文献   

8.
瓦屋山中亚热带湿性常绿阔叶林的林窗形成特征   总被引:12,自引:0,他引:12  
调查了瓦屋山原生和次生的中亚热带性常绿阔叶林的林窗形成特征,并对林窗形成特征,林窗制造者的死亡方式和原因进行了探讨,结果表明,次生常绿阔叶林林窗面积均<10m^2,1hm^2仅9个,林下更新不明显,原生林林窗密度为1hm^215个,<40m^2的林窗占56%,>100m^2的林窗只有4个,林窗平均面积59m^2,扩展林窗平均面积105m^2,林窗和扩展林窗总面积占被调查林分的比例分别为11.1%和19.8%,林窗大小分布表现出负指数分布,即小林窗多,大林窗少,林窗形状的变异较大,大多数因边界木的多少而成不规则的多边形,大多数林窗是多个林木死亡事件的结果,因而大多数林窗有两个或两个以上的林窗制造者,各林窗年龄大多数在10a以上,最近形成的林窗极少,估计林窗表成率是0.01.a^-1,采用样地投影调查方法可提高测定精度,便于不同调查林分结果的有效比较,常绿阔叶林林窗形成原因较为复杂,小径木的死亡是竞争被压所致,而大径的较高冠层木的死亡则可能是树木生长发育以及与地形,风等自然因子相互作用的结果。  相似文献   

9.
格氏栲林林窗自然干扰规律   总被引:14,自引:1,他引:13  
刘金福  洪伟  李俊清  杨文晖 《生态学报》2003,23(10):1991-1999
通过对格氏栲(Gastanopsis kawakamii)林林窗自然干扰的基本规律的研究,得到了描述林窗干扰状况的一些重要特征。结果表明:格氏栲林中扩展林窗(EG)所占面积比例为34.46%,而实际林窗(CG)所占的面积比例为17.81%,干扰频率每年分别为0.69%和0.36%,林窗干扰返回间隔期为281a;EG的大小变化为63~1257m^2之间,平均为244m^2,而CG的大小变化为22~707m^2之间,平均为126m^2;形成林窗的主要方式是干中折断,比例占36.22%,其次为枯立,比例占32.28形;大多数的林窗是由1~5株形成木形成,3株形成木形成的林窗最多;大多数林窗是在前50a形成的,其中10~40a之前形成的林窗最多;林窗分布格局是均匀分布型的。林窗形成木主要由格氏栲、大叶乌饭(Vaccinium mandarinorum)、山胡椒(Lindera glauca)、狗骨柴(Tricalysia dubi)组成。林窗形成木的地径主要集中在60cm以下,地径20~60cm的主林层乔木形成林窗的比例较大。  相似文献   

10.
林窗调控的土壤水热环境和分解者群落结构可能深刻影响凋落物分解过程,已有的研究结果具有不确定性。为了解高海拔森林林窗面积对凋落枝分解的影响,采用凋落物分解袋法,于2012–2016年冬季和生长季节,研究了川西亚高山森林255–290 m^2(FG1)、153–176 m^2(FG2)、38–46 m^2(FG3)3种面积林窗和林下对岷江冷杉(Abies faxoniana)凋落枝质量损失的影响。结果显示:林窗面积大小显著改变了林窗和林下的雪被厚度、温度和冻融循环频次;雪被厚度和温度以FG1林窗最高,林下最低;FG1、FG2、FG3林窗和林下枝条分解4年后的质量残留率分别为59.9%、59.5%、62.1%和55.3%,分解系数k值分别为0.127、0.131、0.120和0.135,95%分解时间分别为23.6、22.7、25.0和22.2 a;与林下相比,林窗显著增加了第一年和第二年生长季节的质量损失速率,降低了第一年和第四年冬季的枝条质量损失速率;林窗大小对质量损失速率的影响随分解时期变化差异明显,质量损失速率在第一年和第三年冬季随林窗面积增大而增大,在第三年生长季节随林窗面积增大而降低;枝条质量损失的比例在第一年最高,随林窗面积增加而增加,且冬季高于生长季节。综上所述,林窗环境变化深刻影响亚高山森林凋落枝分解,但这种影响随林窗面积和分解时间有所差异。  相似文献   

11.
微生物活性是影响土壤碳循环等地下生态系统过程的重要因素。以徐州市侧柏(Platycladus orientalis(L.)Franco)人工林为研究对象,以未受干扰的侧柏林为对照(CK),设置半径分别为4、8、12m的3种尺度近圆形林窗,从林窗边缘(D1)到距林缘4m(D2)及8m处林下(D3)水平梯度上分析土壤微生物量碳(MBC)、氮(MBN)和代谢功能多样性的变化。结果表明:1)与CK相比,林窗样地土壤MBC总体降低,MBN含量显著下降(P0.05),MBC/MBN显著上升(P0.05)。在3种尺度林窗中,MBC在大林窗偏小,MBN在小林窗偏小;MBC/MBN总体上随林窗尺度增大而减小。2)与CK相比,大中林窗降低了土壤微生物代谢活性(AWCD),小林窗变化不大。从D1到D3点,小林窗的AWCD先降后升,中林窗呈上升趋势,大林窗则相反。而且林窗降低了土壤微生物对各类碳源的利用,主要利用聚合物类和氨基酸类碳源,中林窗样点对碳水化合物和氨基酸类小分子碳源的利用最低。3)林窗总体提高了土壤微生物功能多样性,其中多样性(H')、丰富度(S)和均匀度(E)3个指数在各点之间均无显著差异,小林窗和CK的优势度指数(D_s)显著大于(P0.05)大林窗。侧柏林人工林窗对土壤微生物量和功能多样性的影响有着明显的尺度和位置梯度效应,林窗有望促进侧柏林土壤碳固持和大分子物质降解,提高其应对全球气候变化的能力,综合而言,中尺度林窗对侧柏林生态功能的发挥较为有利。  相似文献   

12.
林隙对小兴安岭阔叶红松林树种更新及物种多样性的影响   总被引:2,自引:0,他引:2  
研究了小兴安岭阔叶红松林不同林隙梯度(林隙中心、林隙近中心、林隙边缘)中主要树种的数量特征,以及林隙大小对树种更新的影响.结果表明:不同梯度林隙内灌木树种的密度均明显高于非林隙,同种灌木密度的比值在1.08~18.15之间;随林隙面积增加,乔木幼苗更新密度逐渐增大,幼树Ⅰ(高度H≥1 m,胸径DBH≤2 cm)和幼树Ⅱ(H≥1 m,2 cm<DBH≤5 cm)的更新密度呈多峰曲线.林隙灌木总体更新密度主要随幼苗和幼树Ⅰ数量而变化.林隙内不同位置幼苗的平均树高、平均基径、种密度和个体密度有所差异.从林隙中心到非林隙,更新层乔木幼苗重要值的大小顺序为:林隙中心>林隙近中心>林隙边缘>非林隙;物种均匀度呈高-低-高的变化,物种多样性的变化为早期林隙>中期林隙>晚期林隙.  相似文献   

13.
Forest canopy structure analyzed by using aerial photographs   总被引:5,自引:0,他引:5  
A method was developed using aerial photographs to analyze forest canopy structure. Digital elevation models of both the land and canopy surface in a mesh of 5 m intervals were made from aerial photographs taken in winter (without tree leaves) and summer (with leaves), respectively, in a 60 ha area of temperate deciduous forest. The difference between the two elevation values at each point was regarded as the canopy height, and a canopy height profile was constructed. The estimated canopy structure was compared with that obtained by ground observations in a 6 ha part of the study area. Large gaps (>100 m2) were adequately detected by the method, and the gap size distribution obtained was similar to the one observed on the ground. The method was found to be effective in analyzing the forest canopy structure of large areas, but it is not suitable for the detection of small gaps.  相似文献   

14.
Canopy gaps are evidence of disturbances on forest landscapes. A forest stand is in constant flux, with long stretches of biomass accumulation punctuated by episodic disturbances. We used multitemporal airborne laser scanning data to compare the gap dynamics of four Amazon forest sites. We assessed gap dynamics over 1.9–3.8 years between 2017 and 2020 at sites in the central, central eastern, southeastern, and northeastern regions of the Brazilian Amazon, over areas ranging from 590 to 1205 ha at each site. Gap size ranged from a minimum of 10 m2 to a maximum of about 10,000 m2. We analyzed four stages of gap dynamics: formation, expansion, persistence, and recovery based on two consecutive airborne laser scanning surveys. The gap fraction at our study sites varied between 1.26% and 7.84%. All the sites have similar proportion of gaps among gap size classes. What notably differed among sites was not the gap size-distribution, but the relative importance of stages of gap dynamics. Expansion and persistence rates ranged from 12 to 118 m2 ha−1. The gap formation rate (formation + expansion) was lower than the recovery rate for three of the four study sites. In contrast, the southeastern site has 1.44 times more area in formation and expansion compared to gap recovery. Over the 2–4 years interval of our study, no site was close to steady state. Multitemporal analyses of large areas over many years are needed to improve our understanding of tropical forest dynamics.  相似文献   

15.
A patch age- and tree size-structured simulator was applied to demonstrate the landscape dynamics of a lowland mixed dipterocarp forest, using census data over a 3 year interval from two 1 ha plots in northern West Kalimantan, Indonesia (Western Borneo). Tree growth rate and recruitment rate were estimated as functions of tree size and local crowding. The effect of local crowding was assumed to be one-sided through light competition, where the basal area for all trees larger than a target tree inside the circle of 10 m radius around the target was employed as the index of crowding. Estimated parameters were similar between the two plots. Tree mortality was expressed by descending function of tree size with asymptotic mortality for large trees corresponding to the gap formation rate. One parameter specifying the survival of trees at gap formation, which was required for the landscape-level simulation of a shifting-gap mosaic, was left undetermined from plot census data. Through simulation, this parameter was estimated so as to best fit the observed among-patch variation in terms of local basal area. The overall time course of simulation and tree size structure were not sensitive to this parameter, suggesting that one-sided competition along the vertical forest profile is a stronger determinant of average forest structure than among-patch horizontal heterogeneity in this forest. Simulated dynamic steady state successfully reproduced the observed forest architecture in the gap-dynamic landscape. It took about 400 years for a vacant landscape to be replaced by a steady-state architecture of forest. Sensitivity analysis suggests that steady-state basal area and biomass are most sensitive to changing gap formation rate and intrinsic size growth rate.  相似文献   

16.
周扬  张丹桔  宋思梦  李勋  张艳  张健 《植物研究》2017,37(6):915-925
林窗大小与植物计量化学的耦合关系是林分管理的基础,马尾松人工林相关研究尚欠缺。本文以宜宾高县来复镇41 a生马尾松(Pinus massoniana)人工林为研究对象,设置8个梯度不同大小林窗(CK:0 m2、G1:100 m2、G2:225 m2、G3:400 m2、G4:625 m2、G5:900 m2、G6:1 225 m2、G7:1 600 m2),通过调查,选取自然更新优势草本铁芒萁(Dicranopteris dichotoma)、芒(Miscanthus sinensis)和皱叶狗尾草(Setaria plicata)进行叶片N,P生态化学计量特征探究。结果发现:研究区优势草本叶片平均N含量为15.25 mg·g-1,P含量为1.19 mg·g-1,更新植物受限元素主要为N元素;随林窗面积增大,林内光照强度、温度和湿度均显著增加,优势草本叶片N、P含量受林窗大小显著影响,各物种P含量随林窗面积增大呈降低趋势;不同物种N含量随林窗大小改变的变化规律不同,芒萁N含量随林窗面积增大而显著下降,芒和皱叶狗尾草随林窗面积增大N含量显著增加;在叶片N、P化学计量水平上,芒萁的最适林窗面积为100~225 m2,芒和皱叶狗尾草最适林窗面积为1 225~1 600 m2。上述结果说明通过调整林窗来进行近自然改造和森林抚育等措施,能够促进人工林内养分循环,有利于提高马尾松人工林生态系统生产力。  相似文献   

17.
云南亚高山云冷杉林林窗的研究   总被引:26,自引:3,他引:23  
研究了云南碧塔海两块亚高山云冷杉(Picea-Abies)林内中小尺度林窗的干扰体系,结果表明:林窗和扩展林窗分别占林地面积的19%和41%,平均面积为44m2和139m2,林窗的形成频率为0.005~0.007/y。估计平均林窗周期为167年。大多数林窗(占87%)的制造林窗树木(gap-maker,简记为GM)为1个以上,平均每个林窗的GM为2.9个,同一林窗内的GM常常死于不同的时间。在所有调查的GM中,折断占60%,而根拔和直立死亡分别为28%和12%  相似文献   

18.
Abstract. We characterized the abundance, size and spatial patterning of canopy gaps, as well as gap‐forming processes and light availability in boreal, sub‐boreal, northern temperate and subalpine old‐growth forests of northwestern British Columbia. The proportion of area in canopy gaps ranged from 32% in northern temperate forests to 73% in subalpine forests. Evenly distributed developmental gaps were dominant but permanent openings created by edaphic components and by shrub communities were also common, particularly in subboreal forests. Abundant gaps, large gap sizes, high numbers of gap makers per gap and frequent gap expansion events suggest that gaps have long tenure in these forests. Snapped stems and standing dead mortality were the most common modes of mortality in all forest types resulting in little forest floor disturbance, creating few germination sites for seedling establishment. We found high mean light levels (16–27% full sun) and little difference between non‐gap and gap light environments. Our results suggest that gap dynamics in these forests differ fundamentally from those in temperate and tropical forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号