首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Bmp-4 on interdigital cell death were investigated in the mouse. Affi-Gel beads, loaded with recombinant Bmp-4 protein, were transplanted into the interdigital tissues of day 12.5 hindlimb, ex utero. It was established that Bmp-4 could induce precocious interdigital cell death. Using in situ hybridization, the expression patterns of bmp-4 and alk-6 receptor were established. Both genes were found coexpressed in the interdigital region of 12.5- and 13. 5-day hindlimbs. This suggests that Bmp-4 may act in an autocrine fashion. We have also studied the effects of Bmp-4 on 12.5-day interdigital tissue cultures. In all specimens examined, the interdigital tissues produced cartilage instead of participating in cell death. The addition of exogenous Bmp-4 to the interdigital cultures did not induce apoptosis but instead enhanced chondrogenesis. The discrepancy between the effects of Bmp-4 in vitro and ex utero was attributed to the presence of digits. When a flanking digit was left attached to the interdigital tissues, in vitro, Bmp-4 promoted apoptosis instead of chondrogenesis. In sum, the results suggest that Bmp-4 is a multifunctional protein and its effect on the interdigital tissues is dependent on the modulating influence of the digits.  相似文献   

2.
In developing chick leg buds, large-scale cell death occurs in the interdigital zone, which is responsible for the separation of digits from each other. Ectopic cartilage formation is known to occur upon removal of the chondrogenic digit tissue of the leg bud. To examine the mechanisms of ectopic cartilage formation in the interdigital cell death region, we performed the following operations on stage 28–29 leg buds: (i) removal of the digit-forming area; (ii) incision between the interdigital zone and digit region; (iii) insertion of an aluminum barrier into the interdigital zone; and (iv) insertion of a permeable Nuclepore filter into the interdigital zone. In all cases, the inhibition of cell death and/or the formation of ectopic cartilage in the interdigital zone were observed, although the frequency of the inhibition of cell death and the formation of ectopic cartilage varied, depending upon the position where the operations were performed. These results suggest that cell death and cell differentiation in the interdigital zone may be controlled by some factor(s) from digit cartilage.  相似文献   

3.
Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.  相似文献   

4.
The development of cartilage nodules in cultures of chick limb bud mesenchyme (Hamburger-Hamilton stages 23/24) is significantly promoted when the culture medium is supplemented with (poly-L-lysine (PL) (M(r) greater than or equal to 14K) (San Antonio and Tuan, 1986. Dev. Biol. 115: 313). Here we present findings consistent with the hypothesis that PL may promote chondrogenesis by interacting electrostatically with sulfated glycosaminoglycans (GAGs): (1) poly-L-ornithine, poly-L-histidine, poly-D,L-lysine, and lysine-containing heteropolypeptides stimulate chondrogenesis in proportion to their contents of cationic residues; (2) the effects of PL are diminished when limb mesenchyme cultures are supplemented with exogenous GAGs, including heparin, dermatan sulfate, and chondroitin sulfate; (3) in high density cultures of limb bud mesenchyme, the release of sulfated macromolecules, but not of proteins in general, into the culture medium was significantly inhibited by PL (398K M(r)) treatment, and a net increase in total GAG content of the PL-treated cultures was observed; and (4) in monolayer cultures of cells derived from other chick embryonic tissues, including liver, skeletal muscle, and calvaria, PL treatment promoted the cell layer-associated retention of sulfated GAG. These effects were not observed using the nonstimulatory, low M(r) PL (4K). Based on the above findings and those from previous studies, it is proposed that PL may promote chondrogenesis by interacting electrostatically with cartilage GAGs, thus trapping the extracellular matrix around the newly emerging cartilage nodules and thereby stabilizing their growth and differentiation.  相似文献   

5.
《The Journal of cell biology》1987,105(6):2569-2579
The tissue distribution of the extracellular matrix glycoprotein, tenascin, during cartilage and bone development in rodents has been investigated by immunohistochemistry. Tenascin was present in condensing mesenchyme of cartilage anlagen, but not in the surrounding mesenchyme. In fully differentiated cartilages, tenascin was only present in the perichondrium. In bones that form by endochondral ossification, tenascin reappeared around the osteogenic cells invading the cartilage model. Tenascin was also present in the condensing mesenchyme of developing bones that form by intramembranous ossification and later was present around the spicules of forming bone. Tenascin was absent from mature bone matrix but persisted on periosteal and endosteal surfaces. Immunofluorescent staining of wing bud cultures from chick embryos showed large amounts of tenascin in the forming cartilage nodules. Cultures grown on a substrate of tenascin produced more cartilage nodules than cultures grown on tissue culture plastic. Tenascin in the culture medium inhibited the attachment of wing bud cells to fibronectin-coated substrates. We propose that tenascin plays an important role in chondrogenesis by modulating fibronectin-cell interactions and causing cell rounding and condensation.  相似文献   

6.
7.
During limb development, the interdigital mesenchyme has been proposed to play a signaling role instructing morphogenesis of different digit types, as well as undergoing programmed cell death necessary to free digits in animals not adapted for swimming or flying. We have generated a conditional, tamoxifen-dependent Cre line, Bmp2CreER, which drives highly selective recombination restricted to the distal limb mesoderm, largely restricted to the interdigits, and selectively active in digit ligament but not tendon progenitors at later stages. The Bmp2CreER provides a valuable new tool to dissect roles of interdigital mesenchyme and potentially investigate divergence of ligament and tendon lineages.  相似文献   

8.
The inhibitory effect of 5-bromodeoxyuridine (BrdU) on the programmed cell death in interdigital mesenchyme of a chick leg bud was studied using vital staining and histological methods. A single administration of BrdU at day 6 1/3 specifically inhibited the programmed cell death in the mesenchyme of interdigital areas of a leg bud, resulting in the formation of a web-like structure. No inhibitory effect was observed on general development of limb buds. Hoechst 33258 staining revealed that many cells of interdigits incorporated BrdU into their nuclei. The simultaneous administration of thymidine blocked the BrdU effect.  相似文献   

9.
Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis   总被引:6,自引:0,他引:6  
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.  相似文献   

10.
11.
12.
13.
The requirement for homotypic cell interaction was studied by making chimeric micromass cultures containing various proportions of chick and quail limb mesenchyme. Cultures made from limb mesenchyme from embryos of Hamburger and Hamilton stages 23–24 produce large clumps of cartilage cells, identified by the accumulation of an extracellular matrix which stains with alcian blue at pH 1 and by the ability of cells to take up 35SO4 rapidly, as demonstrated autoradiographically. Dissociated mesenchyme from stage 19 embryos did not produce cartilage in micromass cultures, but only precartilage cell aggregates. Micromass cultures prepared from mixtures of mesenchyme cells obtained from stage 19 and stages 23–24 embryos contained decreasing numbers of cartilage nodules as the proportion of stage 19-derived mesenchyme increased. At the same time the number of aggregates was not affected. When the ratio of stage 19- to stage 24-derived cells was 3:1 or greater, no nodules were detected. The actual number of cells from each stage was verified by using mixtures of quail and chick cells, which are microscopically distinguishable. Additional evidence suggests that the stage 19-derived mesenchyme inhibits chondrogenesis by passively preventing stage 24-derived cells from interacting. The results presented are consistent with the suggestions that (1) homotypic cell interaction plays a role in limb chondrogenesis and (2) the capacity to interact in the required manner is acquired after the embryos have reached stage 19. These phenomena might be involved in the normal histogenesis of cartilage tissue.  相似文献   

14.
Current in vitro investigations suggest that ectoderm plays a major role in limb morphogenesis by producing a diffusible factor which inhibits the chondrogenesis of the underlying mesenchyme. In the present work we report evidence supporting such an ectodermal role in vivo. Surgical removal of the marginal ectoderm from the third interdigit of chick leg buds at stages 27 to 30 induces the formation of PNA-positive prechondrogenic mesenchymal condensations 15 hr after the operation. The incidence of prechondrogenic condensations achieved 47, 95.2, and 92.8 of the experimental embryos of stages 27, 28, and 29, respectively. This high rate of prechondrogenic aggregate formation contrasted with a lower incidence of ectopic cartilage formation detectable by Alcian blue staining 40 hr after the operation. The sequential analysis of the experimental interdigits by means of peanut lectin labeling suggests that a number of prechondrogenic condensations undergo disaggregation 20 and 30 hr after the operation failing to form fully differentiated cartilages. When ectoderm removal was accompanied by the elimination of a variable amount of interdigital mesenchyme the incidence of prechondrogenic aggregates showed little differences but the formation of fully differentiated cartilages was reduced at a rate proportional to the amount of interdigital mesenchyme removed. From this study it can be concluded that the ectoderm in vivo appears to inhibit the process of aggregation of the mesenchymal cells to form prechondrogenic condensations. Furthermore our results suggest that as observed in vitro (C. P. Cotrill, C. Archer, and L. Wolpert, 1987, Dev. Biol. 122, 503-515) the transformation of prechondrogenic aggregates into fully differentiated cartilage requires the involvement of a critical amount of mesenchymal cells.  相似文献   

15.
16.
The developing limb serves as a paradigm for studying pattern formation and morphogenetic cell death. Here, we show that conditional deletion of N-Myc (Mycn) in the developing mouse limb leads to uniformly small skeletal elements and profound soft-tissue syndactyly. The small skeletal elements are associated with decreased proliferation of limb bud mesenchyme and small cartilaginous condensations, and syndactyly is associated with a complete absence of interdigital cell death. Although Myc family proteins have pro-apoptotic activity, N-Myc is not expressed in interdigital cells undergoing programmed cell death. We provide evidence indicating that the lack of interdigital cell death and associated syndactyly is related to an absence of interdigital cells marked by expression of Fgfr2 and Msx2. Thus, instead of directly regulating interdigital cell death, we propose that N-Myc is required for the proper generation of undifferentiated mesenchymal cells that become localized to interdigital regions and trigger digit separation when eliminated by programmed cell death. Our results provide new insight into mechanisms that control limb development and suggest that defects in the formation of N-Myc-dependent interdigital tissue may be a root cause of common syndromic forms of syndactyly.  相似文献   

17.
SOMITE CHONDROGENESIS : A Structural Analysis   总被引:2,自引:1,他引:1  
Light and electron microscopy are used in this study to compare chondrogenesis in cultured somites with vertebral chondrogenesis These studies have also characterized some of the effects of inducer tissues (notochord and spinal cord), and different nutrient media, on chondrogenesis in cultured somites Somites from stage 17 (54–60 h) chick embryos were cultured, with or without inducer tissues, and were fed nutrient medium containing either horse serum (HS) and embryo extract (EE), or fetal calf serum (FCS) and F12X Amino acid analyses were also utilized to determine the collagen content of vertebral body cartilage in which the fibrils are homogeneously thin (ca. 150 Å) and unbanded. These analyses provide strong evidence that the thin unbanded fibrils in embryonic cartilage matrix are collagen. These thin unbanded collagen fibrils, and prominent 200–800 Å protein polysaccharide granules, constitute the structured matrix components of both developing vertebral cartilage and the cartilage formed in cultured somites Similar matrix components accumulate around the inducer tissues notochord and spinal cord. These matrix components are structurally distinct from those in embryonic fibrous tissue The synthesis of matrix by the inducer tissues is associated with the inductive interaction of these tissues with somitic mesenchyme. Due to the deleterious effects of tissue isolation and culture procedures many cells die in somitic mesenchyme during the first 24 h in culture. In spite of this cell death, chondrogenic areas are recognized after 12 h in induced cultures, and through the first 2 days in all cultures there are larger accumulations of structured matrix than are present in equivalently aged somitic mesenchyme in vivo. Surviving chondrogenic areas develop into nodules of hyaline cartilage in all induced cultures, and in most non-induced cultures fed medium containing FCS and F12X There is more cell death, less matrix accumulation, and less cartilage formed in cultures fed medium containing HS and EE. The inducer tissues, as well as nutrient medium containing FCS and F12X, facilitate cell survival, the synthesis and accumulation of cartilage matrix, and the formation of cartilage nodules in cultured somites.  相似文献   

18.
We have previously shown that removal of the apical ectodermal ridge of the third interdigital space of the chick leg bud at stages 28 and 29 is followed by the appearance of ectopic cartilage, which in the course of development gives rise to extra digits. These in vivo studies suggest that the pattern of skeletal morphogenesis in the limb depends on the inhibitory effect of the ectoderm. In the present study we tested whether zone polarizing activity (ZPA) exerted an effect on the pattern of experimental chondrogenesis in the interdigital space of the leg bud in stage 29 HH chick embryos. A small fragment of tissue from the ZPA in chick embryos in which ZPA activity was most intense was grafted onto the interdigital space in which chondrogenesis had previously been experimentally induced. No significant changes were observed in the course of differentiation of the recipient interdigital spaces with ZPA grafts, leading us to conclude that the graft failed to modify the morphogenetic fate of interdigital tissue.  相似文献   

19.
Continuous exposure of chicken embryo limb bud mesenchyme cells undergoing chondrogenesis in vitro to [3H] thymidine thymidine [(3H]TdR) revealed that more than 90% of the cells synthesized DNA at least once during 120 h of culture. When cells were exposed to [3H]TdR for 24 h beginning at various times throughout the culture period, the percentage of cells which incorporated [3H]TdR during each period was approximately 92%. However, when the period for incorporation of radioisotope was limited to two hours, the number of cells which incorporated [3H]TdR was found to decline during chondrogenesis in vitro. This decline was coincident with the appearance of extracellular matrix material and occurred in those cells which had, and had not, expressed the cartilage phenotype. We conclude from these studies that (1) practically all of the cells continue to proliferate while chondrogenesis is occurring in vitro, (2) there is an increase in the length of the cell cycle during chondrogenesis in vitro, and (3) withdrawal from the cell cycle is not required for differentiation of mesenchyme into cartilage.  相似文献   

20.
In vertebrate limbs that lack webbing, the embryonic interdigit region is removed by programmed cell death (PCD). Established models suggest that bone morphogenetic proteins (BMPs) directly trigger such PCD, although no direct genetic evidence exists for this. Alternatively, BMPs might indirectly affect PCD by regulating fibroblast growth factors (FGFs), which act as cell survival factors. Here, we inactivated the mouse BMP receptor gene Bmpr1a specifically in the limb bud apical ectodermal ridge (AER), a source of FGF activity. Early inactivation completely prevents AER formation. However, inactivation after limb bud initiation causes an upregulation of two AER-FGFs, Fgf4 and Fgf8, and a loss of interdigital PCD leading to webbed limbs. To determine whether excess FGF signaling inhibits interdigit PCD in these Bmpr1a mutant limbs, we performed double and triple AER-specific inactivations of Bmpr1a, Fgf4 and Fgf8. Webbing persists in AER-specific inactivations of Bmpr1a and Fgf8 owing to elevated Fgf4 expression. Inactivation of Bmpr1a, Fgf8 and one copy of Fgf4 eliminates webbing. We conclude that during normal embryogenesis, BMP signaling to the AER indirectly regulates interdigit PCD by regulating AER-FGFs, which act as survival factors for the interdigit mesenchyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号