首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial composition and distribution in the different gut regions of Camponotus japonicus were investigated using both culture-dependent method and culture-independent method of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR–DGGE). Five different bacterial strains were isolated using culture-dependent method, and they all belong to the phylum Firmicutes, including three genera of bacteria Bacillus, Paenibacillus, and Enterococcus. Bacillus cereus and Enterococcus mundtii were found in the midgut; Paenibacillus sp. was isolated from the hindgut; and the other two Bacillus spp. were isolated from the crop. Twelve distinct DGGE bands were found using PCR–DGGE method, and their sequences blasting analysis shows that they are members of the Proteobacteria and the Firmicutes, respectively, including three genera (Pseudomonas, Candidatus Blochmannia, Fructobacillus) and one uncultured bacterium, in which Pseudomonas was the most dominant bacteria group in all the three gut regions. According to the DGGE profile, the three gut regions had very similar gut communities, and all the DGGE bands were presented in the midgut and hindgut, while just two bands representing Blochmannia were not present in the crop. The results of our study indicate that the gut of C. japonicus harbors several other bacteria besides the obligate endosymbionts Blochmannia, and more work should be carried on to verify if they are common in the guts of other Camponotus ants.  相似文献   

2.
The guts of soil-feeding macroinvertebrates contain a complex microbial community that is involved in the transformation of ingested soil organic matter. In a companion paper (T. Lemke, U. Stingl, M. Egert, M. W. Friedrich, and A. Brune, Appl. Environ. Microbiol. 69:6650-6658, 2003), we show that the gut of our model organism, the humivorous larva of the cetoniid beetle Pachnoda ephippiata, is characterized by strong midgut alkalinity, high concentrations of microbial fermentation products, and the presence of a diverse, yet unstudied microbial community. Here, we report on the community structure of bacteria and archaea in the midgut, hindgut, and food soil of P. ephippiata larvae, determined with cultivation-independent techniques. Clone libraries and terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed that the intestines of P. ephippiata larvae contain a complex gut microbiota that differs markedly between midgut and hindgut and that is clearly distinct from the microbiota in the food soil. The bacterial community is dominated by phylogenetic groups with a fermentative metabolism (Lactobacillales, Clostridiales, Bacillales, and Cytophaga-Flavobacterium-Bacteroides [CFB] phylum), which is corroborated by high lactate and acetate concentrations in the midgut and hindgut and by the large numbers of lactogenic and acetogenic bacteria in both gut compartments reported in the companion paper. Based on 16S rRNA gene frequencies, Actinobacteria dominate the alkaline midgut, while the hindgut is dominated by members of the CFB phylum. The archaeal community, however, is less diverse. 16S rRNA genes affiliated with mesophilic Crenarchaeota, probably stemming from the ingested soil, were most frequent in the midgut, whereas Methanobacteriaceae-related 16S rRNA genes were most frequent in the hindgut. These findings agree with the reported restriction of methanogenesis to the hindgut of Pachnoda larvae.  相似文献   

3.
Amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae) is caused by ingestion of pADAP plasmid carrying isolates of Serratia entomophila or Serratia proteamaculans (Enterobacteriaceae) and causes infected larvae to cease feeding and clear their midgut to a pale amber colour where midgut serine protease activities are virtually eliminated. Using bacterial strains and mutants expressing combinations of the anti-feeding (afp) and gut clearance (sep) gene clusters from pADAP, we manipulated the disease phenotype and demonstrated directly the relationship between gene clusters, phenotype and loss of enzyme activity. Treatment with afp-expressing strains caused cessation of feeding without gut clearance where midgut protease activity was maintained at levels similar to that of healthy larvae. Treatment with strains expressing sep-genes caused gut clearance followed by a virtual elimination of trypsin and chymotrypsin titre in the midgut indicating both the loss of pre-existing enzyme from the lumen and a failure to replenish enzyme levels in this region by secretion from the epithelium. Monitoring of enzymatic activity through the alimentary tract during expression of disease showed that loss of serine protease activity in the midgut was matched by a surge of protease activity in the hindgut and frass pellets, indicating a flushing and elimination of the midgut contents. The blocking of enzyme secretion through amber disease appears to be selective as leucine aminopeptidase and α-amylase were still detected in the midgut of diseased larvae.  相似文献   

4.
The location and morphology of the bacteria associated with the gastrointestinal tract of Acheta domestica were studied, and these bacteria were partially characterized. Bacteria were associated with the peritrophic membrane in the midgut and with the gut wall and cuticular structures of the hindgut. No bacteria were associated with the fat bodies. Colony-forming unit determinations indicated that there were three times more cultivatable bacteria in the hindgut than in the midgut. Of these bacteria, 40 to 85% cleared uric acid anaerobically, and 90 to 100% cleared uric acid aerobically. Of the 25 isolates obtained, 21 belonged to the genera Citrobacter, Klebsiella, Yersinia, Bacteroides, and Fusobacterium.  相似文献   

5.
In a seasonal study we used immunofluorescence to follow a specific bacterial population, as well as total numbers, through the fore-, mid-, and hindgut of a deposit feeder, Abarenicola pacifica. We chose a pseudomonad because of its high ambient abundance. On five dates, we collected A. pacifica gut contents, with concurrent measurements of sedimentary food quality (chlorophyll a, protein, bacterial abundance), animal egestion rates (inversely proportional to gut residence time), and temperature. Increasing bacterial numbers from ingested sediment to foregut contents, and decreases from foregut to midgut indicate significant selection and digestion, respectively, of both the pseudomonad and the total bacterial community. Inverse correlations between egestion rate and digestive removal of bacteria offer some support for the prediction that digestion of bacteria is proportional to time spent exposed to digestive enzymes, although the significance of the associated statistical tests is marginal. No hindgut growth of the pseudomonad was observed, likely due to the short gut residence time of A. pacifica. The pseudomonad showed variation of less than a factor of 3 in its ambient sedimentary abundance over the year. Off print requests to: C. Plante.  相似文献   

6.
In the digestive system of Euscelidius variegatus Kirshbaum (Homoptera : (Cicadellidae), the close apposition of the anterior midgut with its posterior tabular midgut forms a filter chamber, which shunts excess water in the imbibed plant sap to the hindgut. Leafhoppers congenitally infected with a parasitic enteroform bacterium (designated BEV) had slightly atrophied digestive systems. There were numerous bacteria within the cells of the filter chamber, conical segment, and tubular midgut. Bacteria within the epithelium cells were usually enclosed within lysosomes. Epithelium cells swollen with large numbers of bacteria, had deteriorated cell membranes, and bacteria had erupted into the gut lumen. Leafhoppers not infected by BEV, harbored bacteria in the gut lumen, but not intracellularly within gut cells.  相似文献   

7.
Camponotus is the second largest ant genus and known to harbor the primary endosymbiotic bacteria of the genus Blochmannia. However, little is known about the effect of diet and environment changes on the gut bacterial communities of these ants. We investigated the intestinal bacterial communities in the lab-raised and field-collected ants of Camponotus fragilis which is found in the southwestern United States and northern reaches of Mexico. We determined the difference of gut bacterial composition and distribution among the crop, midgut, and hindgut of the two types of colonies. Number of bacterial species varied with the methods of detection and the source of the ants. Lab-raised ants yielded 12 and 11 species using classical microbial culture methods and small-subunit rRNA genes (16S rRNAs) polymerase chain reaction-restriction fragment-length polymorphism analysis, respectively. Field-collected ants yielded just 4 and 1–3 species using the same methods. Most gut bacterial species from the lab-raised ants were unevenly distributed among the crop, midgut, and hindgut, and each section had its own dominant bacterial species. Acetobacter was the prominent bacteria group in crop, accounting for about 55 % of the crop clone library. Blochmannia was the dominant species in midgut, nearly reaching 90 % of the midgut clone library. Pseudomonas aeruginosa dominated the hindgut, accounting for over 98 % of the hindgut clone library. P. aeruginosa was the only species common to all three sections. A comparison between lab-raised and field-collected ants, and comparison with other species, shows that gut bacterial communities vary with local environment and diet. The bacterial species identified here were most likely commensals with little effect on their hosts or mild pathogens deleterious to colony health.  相似文献   

8.
The soil macrofauna plays an important role in the carbon and nitrogen cycle of terrestrial ecosystems. In order to gain more insight into the role of the intestinal microbiota in transformation and mineralization of organic matter during gut passage, we characterized the physicochemical conditions, microbial activities, and community structure in the gut of our model organism, the humus-feeding larva of the cetoniid beetle Pachnoda ephippiata. Microsensor measurements revealed an extreme alkalinity in the midgut, with highest values (pH > 10) between the second and third crown of midgut ceca. Both midgut and hindgut were largely anoxic, but despite the high pH, the redox potential of the midgut content was surprisingly high even in the largest instar. However, reducing conditions prevailed in the hindgut paunch of all instars (Eh ~ −100 mV). Both gut compartments possessed a pronounced gut microbiota, with highest numbers in the hindgut, and microbial fermentation products were present in high concentrations. The stimulation of hindgut methanogenesis by exogenous electron donors, such as H2, formate, and methanol, together with considerable concentrations of formate in midgut and hemolymph, suggests that midgut fermentations are coupled to methanogenesis in the hindgut by an intercompartmental transfer of reducing equivalents via the hemolymph. The results of a cultivation-based enumeration of the major metabolic groups in midgut and hindgut, which yielded high titers of lactogenic, propionigenic, and acetogenic bacteria, are in good agreement not only with the accumulation of microbial fermentation products in the respective compartments but also with the results of a cultivation-independent characterization of the bacterial communities reported in the companion paper (M. Egert, B. Wagner, T. Lemke, A. Brune, and M. W. Friedrich, Appl. Environ. Microbiol. 69:6659-6668, 2003).  相似文献   

9.
Physicochemical gut conditions and the composition and topology of the intestinal microbiota in the major gut compartments of the root-feeding larva of the European cockchafer (Melolontha melolontha) were studied. Axial and radial profiles of pH, O2, H2, and redox potential were measured with microsensors. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S rRNA genes in midgut samples of individual larvae revealed a simple but variable and probably nonspecific community structure. In contrast, the T-RFLP profiles of the hindgut samples were more diverse but highly similar, especially in the wall fraction, indicating the presence of a gut-specific community involved in digestion. While high acetate concentrations in the midgut and hindgut (34 and 15 mM) corroborated the presence of microbial fermentation in both compartments, methanogenesis was confined to the hindgut. Methanobrevibacter spp. were the only methanogens detected and were restricted to this compartment. Bacterial 16S rRNA gene clone libraries of the hindgut were dominated by clones related to the Clostridiales. Clones related to the Actinobacteria, Bacillales, Lactobacillales, and γ-Proteobacteria were restricted to the lumen, whereas clones related to the β- and δ-Proteobacteria were found only on the hindgut wall. Results of PCR-based analyses and fluorescence in situ hybridization of whole cells with group-specific oligonucleotide probes documented that Desulfovibrio-related bacteria comprise 10 to 15% of the bacterial community at the hindgut wall. The restriction of the sulfate-reducer-specific adenosine-5′-phosphosulfate reductase gene apsA to DNA extracts of the hindgut wall in larvae from four other populations in Europe suggested that sulfate reducers generally colonize this habitat.  相似文献   

10.
Chinese mitten crab (CMC, Eriocheir sinensis) is an economically valuable species in South-East Asia that has been widely farmed in China. Characterization of the intestinal bacterial diversity of CMC will provide insights into the aquaculturing of CMCs. Based on the analysis of cloned 16S rRNA genes from culture-independent CMC gut bacteria, 124 out of 128 different clones reveal >95% nucleotide similarity to the species belonging to the four phyla of Tenericutes, Bacteroidetes, Firmicutes and Proteobacteria; one clone shows 91% sequence similarity to the member of TM7 (a candidate phylum without cultured representatives). Fluorescent in situ hybridization also reveals the abundance of Bacteroidetes in crab intestine. Electron micrographs show that spherical and filamentous bacteria are closely associated with the microvillus brush border of the midgut epithelium and are often inserted into the space between the microvilli using a stalk-like cell appendage. In contrast, the predominant rod-shaped bacteria in the hindgut are tightly attached to the epithelium surface by an unusual pili-like structure. Both 16S rRNA gene denaturing gel gradient electrophoresis and metagenome library indicate that the CMC Mollicutes group 2 appears to be present in both the midgut and hindgut with no significant difference in abundance. The CMC Mollicutes group 1, however, was found mostly in the midgut of CMCs. The CMC gut Mollicutes phylotypes appear to be most closely related to Mollicutes symbionts detected in the gut of isopods (Crustacea: Isopoda). Overall, the results suggest that CMCs harbor diverse, novel and specific gut bacteria, which are likely to live in close relationships with the CMC host.  相似文献   

11.
《Journal of Asia》2020,23(3):723-730
The Sunn pest, Eurygaster integriceps (Hemiptera: Scutelleridae), is the severe pest of cereals, especially of wheat in many parts of the world. Many insect species, including the Sunn pest that feed solely on nutritionally restricted diets, harbor symbiotic microorganisms. In the current study, we isolated and identified the Sunn pest bacterial symbionts of gut fractions and ovary. The phylogenetic analysis indicated that Sunn pest gut bacterial symbionts are polyphyletic and contained a taxonomic diversity belonging to three different phyla, including Firmicutes, Tenericutes, and Proteobacteria. Firmicutes was represented by Enterococcus, Proteobacteria by Pantoea and Acetobacteraceae, and Tenericutes by Spiroplasma. We isolated and identified Enterococcus, Acetobacteraceae, Spiroplasma and Pantoea from Sunn pest different gut compartments, and Pantoea from ovaries. There was considerable overlap between recognized symbionts from the 2nd and 3rd midgut sections (Acetobacteraceae), the 4th midgut section and hindgut (Spiroplasma), and 4th midgut section and ovary (Pantoea). Niche heterogeneity within a microbial habitat of gut fractions resulted in colonizing and adaptation of various communities of symbionts in each fraction. The Sunn pest gut compartments and ovary symbionts have been demonstrated to be of multiple evolutionary origins. This diversity may be of great importance to the Sunn pest fitness and survival in various overwintering niches.  相似文献   

12.
Aims: To locate and identify putative autochthonous bacteria within the grass grub gut that may have a role in symbiosis. Methods and Results: Polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) fingerprinting was used to investigate bacterial diversity in the grass grub larval gut. The microbial community profiles from five geographically distinct populations were compared and the influence of feeding was analysed. Bacterial community in the midgut was highly variable between locations and was affected by feeding. The hindgut contained a more diverse but stable bacterial community that was less affected by external conditions. Forty-seven distinct DGGE bands, representing different bacterial genotypes, could be distinguished from all samples, with 34 different bands occurring in the hindgut. The 22 most common bands were isolated and DNA was sequenced. Sequence analysis revealed that most bacteria (16/22) were affiliated to the Clostridiales with the predominant bacteria affiliated to the genus Clostridium. The remaining bacteria were aligned to the Betaproteobacteria, Deltaproteobacteria and Bacteroidetes. Conclusions: The grass grub larva has an autochthonous microflora with predominance of Clostridium spp. in the hindgut. Significance and Impact of the Study: Occurrence of an autocthonous microflora in the grass grub hindgut suggests a symbiotic relationship which could help explain the ability of larval scarabs to feed on recalcitrant organic matter.  相似文献   

13.

Microorganisms play an important role in the growth and development of numerous insect species. The mulberry silkworm, Bombyx mori (Lepidoptera), harbors several bacteria in its midgut aiding the metabolic processes; however, the variability of bacterial spp. present in the midgut and their role(s) in the growth and development of the silkworm are poorly understood. The present work compares the diversity of midgut bacterial communities in silkworms of variable voltinism (Pure Mysore, PM: multivoltine; CSR2: bivoltine and PM × CSR2: crossbreed) through metagenomics. The predominance of Enterococcus (30.30%) followed by Bacillus (16.96%) was observed in PM, whereas Lactobacillus (56.56%) followed by Enterococcus (10.58%) was seen only in CSR2. Interestingly, crossbreed midgut harbored diverse bacterial communities (36.21% Lactobacillus, 25.94% Bacillus, 8.1% Enterococcus, and 18.37% uncultured bacteria). Metagenomic profiles indicate variability in the gut bacterial population in different kinds of silkworms influencing the physiological activities accordingly. The dominant bacteria, particularly lactobacilli, bacilli, and enterococci could be further explored for identifying the potential probiotic consortia based on a literature survey and potential involvement in nutrient absorption, disease/stress tolerance, and improved economic traits.

  相似文献   

14.
《Insect Biochemistry》1979,9(6):619-625
The cellulase of the higher termite Nasutitermes exitiosus was located in the foregut (19%), the midgut (59%), the mixed segment (14%) and in the hindgut (8%). Removal of the gut flora by feeding tetracycline or by starving the termite did not affect the activity of the enzymes indicating that the termite secretes its own cellulase and is not dependent on its gut flora for the digestion of cellulose. The cellulase of the lower termite Coptotermes lacteus was distributed through the foregut (19%), midgut (32%) and hindgut (49%). Removal of the gut flora and fauna, left the specific activity of the cellulase of the fore- and mid-gut largely unaffected, but led to a 20% decrease in the specific activity of the cellulase in the hindgut. In starved C. lacteus the distribution of cellulase activity was foregut, 44%; midgut, 30% and hindgut, 26%. These results indicate that C. lacteus synthesises its own cellulase in addition to using the gut protozoa for cellulose digestion.  相似文献   

15.
The termite gut is a highly structured microhabitat with physicochemically distinct regions. It is generally separated into the foregut, midgut and hindgut. The distribution of gut microbiota is greatly influenced by varying physicochemical conditions within the gut. Thus, each gut compartment has a unique microbial population structure. In this study, the bacterial communities of foregut, midgut and hindgut of wood-feeding higher termite, Bulbitermes sp. were analyzed in detail via metagenomic sequencing of the 16S rRNA V3-V4 region. While the microbiomes of the foregut and midgut shared a similar taxonomic pattern, the hindgut possessed more diverse bacterial phylotypes. The communities in the foregut and midgut were dominated by members of the group Bacilli and Clostridia (Firmicutes) as well as taxon Actinomycetales (Actinobacteria). The main bacterial lineage found in hindgut was Spirochaetaceae (Spirochaetes). The significant difference among the three guts was the relative abundance of the potential lignin-degrading bacteria, Actinomycetales, in both the foregut and midgut. This suggests that lignin modification was probably held in the anterior part of termite gut. Predictive functional profiles of the metagenomes using 16S rRNA marker gene showed that cell motility, energy metabolism and metabolism of cofactors and vitamins were found predominantly in hindgut microbiota, whereas xenobiotics degradation and metabolism mostly occurred in the foregut segment. This was compatible with our 16S rRNA metagenomic results showing that the lignocellulose degradation process was initiated by lignin disruption, increasing the accessibility of celluloses and hemicelluloses.  相似文献   

16.
Ant lions are insect larvae that feed on the liquefied internal components of insect prey. Prey capture is assisted by the injection of toxins that are reportedly derived from both the insect and bacterial symbionts. These larvae display interesting gut physiology where the midgut is not connected to the hindgut, preventing elimination of solid waste until adulthood. The presence of a discontinuous gut and the potential involvement of bacteria in prey paralyzation suggest an interesting microbial role in ant lion biology; however, the ant lion microbiota has not been described in detail. We therefore performed culture-independent 16S rRNA gene sequence analysis of the bacteria associated with tissues of an ant lion, Myrmeleon mobilis. All 222 sequences were identified as Proteobacteria and could be subdivided into two main groups, the α-Proteobacteria with similarity to Wolbachia spp. (75 clones) and the γ-Proteobacteria with similarity to the family Enterobacteriaceae (144 clones). The Enterobacteriaceae-like 16S rRNA gene sequences were most commonly isolated from gut tissue, and Wolbachia-like sequences were predominant in the head and body tissue. Fluorescence in situ hybridization analyses supported the localization of enterics to gut tissue and Wolbachia to nongut tissue. The diversity of sequences isolated from freshly caught, laboratory-fed, and laboratory-starved ant lions were qualitatively similar, although the libraries from each treatment were significantly different (P = 0.05). These results represent the first culture-independent analysis of the microbiota associated with a discontinuous insect gut and suggest that the ant lion microbial community is relatively simple, which may be a reflection of the diet and gut physiology of these insects.  相似文献   

17.
The hindgut of the lower termites, Mastotermes darwiniensis and Coptotermes lacteus and the higher termite Nasutitermes exitiosus were made aerobic by exposure of the termites to pure oxygen, a procedure which killed their spirochaetes and their protozoa (lower termites only). The time taken for the hindgut to become anaerobic after the termites were restored to normal atmospheric conditions ranged from 2 to 4.5 hr. After oxygen treatment the number of gut bacteria increased some six- to ten-fold in all termite species, indicating that the bacteria are poised to use oxygen entering the gut. Removal of all the hindgut microbiota by feeding tetracycline caused the hindgut to become aerobic in M. darwiniensis and N. exitiosus. The transferring of M. darwiniensis to fresh wood, free of antibiotic, resulted in the return of the normal flora and the eventual establishment of anaerobic conditions in the hindgut. Thus the bacteria appear to be important in maintaining anaerobic conditions in the gut. Attempts to determine whether the protozoa (in the lower termites) played any part in maintaining the Eh of the hindgut were unsuccessful. Serratia marcescens failed to colonise the gut of normal C. lacteus and transiently colonized (for 5 days) the gut of normal N. exitiosus. Transient colonization by S. marcescens (from 6 to 10 days) occurred in N. exitiosus when its hindgut spirochaetes were killed and in C. lacteus when its spirochaetes and protozoa were killed, indicating a possible role for the spirochaetes and/or protozoa in influencing the bacteria allowed to reside in the hindgut. Exposure of normal termites to Serratia provoked an increase in the numbers of the normal gut bacteria.  相似文献   

18.
Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids.  相似文献   

19.
Faeces could be used for evaluating the balance of the equine hindgut microbial ecosystem, which would offer a practical method for assessing gut health and how this relates to disease. However, previous studies concluded that faeces microbial ecosystem was not representative of the proximal hindgut (caecum and ventral colon). This study aimed to evaluate if variations of the faecal microbial ecosystem were similar to those observed in the proximal hindgut. Six horses, fistulated in the caecum and right ventral (RV) colon, were subjected to a gradual change of diet, from a 100% hay (high fibre) diet (2.2 DM kg/day per 100 kg BW) to a 57% hay+43% barley (high starch) diet (0.8 DM kg/day per 100 kg BW hay and 0.6 DM kg/day per 100 kg BW barley). The two diets were iso-energetic and fed over a 3-week trial period. Samples of digesta from the caecum, RV colon and faeces were collected two times on the 10th and 20th day of the trial, for each diet to assess the microbial ecosystem parameters by both classical culture technics and biochemical methods. The variations observed in the caecal and colonic bacterial composition (increase in total anaerobic, amylolytic and lactate-utilizing and decrease in cellulolytic bacteria concentrations) and microbial activity (changes in volatile fatty acids concentrations and increase in lactate concentrations) demonstrated that the hay+barley diet caused changes in the hindgut microbial ecosystem. Similar variations were observed in the faecal microbial ecosystem. Feeding the hay+barley diet resulted in higher concentrations of faecal lipopolysaccharides. The functional bacterial group concentrations (cellulolytics, amylolytics and lactate utilizers) were significantly correlated between caecum and faeces and between colon and faeces. From analyses of the metabolites produced from microbial activity, only valerate concentration in the caecum and the proportion of propionate were significantly correlated with the same parameters in the faeces. Results of the principal component analysis performed between all the caecal/faecal and colonic/faecal parameters revealed that the total anaerobic and cellulolytic bacteria concentrations, as well as valerate, l-lactate and lipopolysaccharide concentrations were strongly correlated with several microbial parameters in the caecum (P<0.027; r>|0.45|) and in the colon (P<0.013; r>|0.50|). This demonstrated that faecal samples and their bacterial analyses could be used to represent caecum and RV colon hindgut microbial ecosystem in terms of variations during a change from a high-fibre to a high-starch diet, and thus could be markers of particular interest to diagnostic proximal hindgut microbial disturbances.  相似文献   

20.
The digestion of various carbohydrates and synthetic substrates by the gut of Locusta migratoria was analysed quantitatively. Maltose, starch, and sucrose were found to be hydrolysed most rapidly, whereas the splitting of cellobiose, trehalose, lactose, and melecitose took place at much slower rates.The absolute carbohydrase activities in foregut and midgut are nearly equal. However, specific activities are much higher in the foregut. Only low activities were found in extracts from the hindgut and salivary glands. The latter show a pattern of sugar splitting which is different from that found in gut preparations.The distribution of carbohydrase activities between the epithelia and lumina of the foregut, midgut, and hindgut and between soluble and particulate fractions were studied. The midgut epithelium is shown to have a particularly high content of enzymes, although some carbohydrases are rather active also in the epithelium of the hindgut. During hunger periods the relative enzymatic activities of the epithelium are distinctly increased.The isolation and purification of the carbohydrases were attempted and a partial separation of individual enzymes was obtained by gel-filtration. These results indicate the presence of at least seven distinct carbohydrases in the locust gut. The molecular weights of the enzymes were estimated by gel-filtration, and KM values and pH-optima are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号