首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that two indazole compounds, lonidamine [1-(2,4-dichlorobenzyl)-indazole-3-carboxylic acid] and its analogue AF2785 [(1-(2,4-dichlorobenzyl)-indazol-3-acrylic acid], suppress fertility in male rats. We also found that these compounds inhibit the cystic fibrosis transmembrane conductance regulator chloride (CFTR-Cl(-)) current in epididymal epithelial cells. To further investigate how lonidamine and AF2785 inhibit the current, we used a spectral analysis protocol to study whole-cell CFTR current variance. Application of lonidamine or AF2785 to the extracellular membrane of rat epididymal epithelial cells introduced a new component to the whole-cell current variance. Spectral analysis of this variance suggested a block at a rate of 3.68 micro mol(-1)/sec(-1) and an off rate of 69.01 sec(-1) for lonidamine, and an on rate of 3.27 micro mol(-1)/sec(-1) and an off rate of 108 sec(-1) for AF2785. Single CFTR-Cl(-) channel activity using excised inside-out membrane patches from rat epididymal epithelial cells revealed that addition of lonidamine to the intracellular solution caused a flickery block (a reduction in channel-open time) at lower concentration (10 micro M) without any effect on open channel probability or single-channel current amplitude. At higher concentrations (50 and 100 micro M), lonidamine showed a flickery block and a decrease in open-channel probability. The flickery block by lonidamine was both voltage-dependent and concentration-dependent. These results suggest that lonidamine and AF2785, which are open-channel blockers of CFTR at low concentrations, also affect CFTR gating at high concentrations. We conclude that these indazole compounds provide new pharmacological tools for the investigation of CFTR. By virtue of their interference with reproductive processes, these drugs have the potential for being developed into novel male contraceptives.  相似文献   

2.
It has been shown previously that the antifertility agents Lonidamine and its analogue AF2785, [1-(2,4-dichlorobenzyl)-indazole-3-acrylic acid] are potent inhibitors of the cAMP-activated chloride channel (CFTR) in rat epididymal cells. In this study, we further characterized the blocking actions of these two compounds and compared them with the known chloride channel blocker diphenylamine-2-carboxylate (DPC). Results show that the order of potency in blocking the cAMP-activated current is AF2785 > Lonidamine > DPC. All three compounds shared similar blocking characteristics. Firstly, their blockade of the current exhibited voltage dependence; all three agents blocked the current more markedly at negative than at positive membrane potentials. Secondly, they blocked the channels from the outside of the cell. Thirdly, their blocking efficacies were maximal at low extracellular pH. Lastly, the time course of the block by AF2785 and DPC appeared to be more rapid than that of Lonidamine. It is hoped that further studies with other indazole compounds will add knowledge to the physiology and pharmacology of CFTR in the epididymis. Such information will be of great importance to our quest for novel male contraceptives. Received: 8 February 2000/Revised: 25 September 2000  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR) and aquaporin-9 (AQP-9) are present in the luminal membrane of the epididymis, where they play an important role in formation of the epididymal fluid. Evidence is accumulating that CFTR regulates other membrane transport proteins besides functioning as a cAMP-activated chloride channel. We have explored the possible interaction between epididymal CFTR and AQP-9 by cloning them from the rat epididymis and expressing them in Xenopus oocytes. The effects of the expressed proteins on oocyte water permeability were studied by immersing oocytes in a hypo-osmotic solution, and the ensuing water flow was measured using a gravimetric method. The results show that AQP-9 alone caused an increase in oocyte water permeability, which could be further potentiated by CFTR. This potentiation was markedly reduced by phloretin and lonidamine (inhibitors of AQP-9 and CFTR, respectively). The regulation of water permeability by CFTR was also demonstrated in intact rat epididymis luminally perfused with a hypo-osmotic solution. Osmotic water reabsorption across the epididymal tubule was reduced by phloretin and lonidamine. Elevation of intracellular cAMP with 3-isobutyl-1-methylxanthine increased osmotic water permeability, whereas inhibiting protein kinase A with H-89 (N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinoline sulfonamide hydrochloride) reduced it. These results are consistent with a role for CFTR in controlling water permeability in the epididymis in vivo. We conclude that this additional role of CFTR in controlling water permeability may have an impact on the genetic disease cystic fibrosis, in which men with a mutated CFTR gene have abnormal epididymis and infertility.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a cAMP-activated chloride channel, which is regulated by protein-protein interactions. The extent to which CFTR is regulated by these interactions remains unknown. Annexin V is overexpressed in cystic fibrosis (CF), and given the functional properties of annexin V and CFTR we considered whether they are associated and if so whether this has implications for CFTR function. Using co-immunoprecipitation and overlay experiments, we show that annexin V is associated with nucleotide-binding domain 1 (NBD1) of CFTR. Surface plasmon resonance (SPR) indicated different KD values in the absence and presence of both calcium and ATP, suggesting that this interaction is calcium- and ATP-dependent. Using an siRNA approach and overexpression, we showed that CFTR chloride channel function and its localization in the cell membranes were dependent on annexin V expression. We concluded that annexin V is necessary for normal CFTR chloride channel activity. Furthermore, we show that CFTR and annexin V are partially co-distributed in normal epithelial cells in human bronchi. In conclusion, we show for the first time that annexin V is associated with CFTR and is involved in its function.  相似文献   

5.
In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.  相似文献   

6.
Ovarian hyperstimulation syndrome (OHSS) remains one of the most life-threatening and potentially fatal complications of assisted reproduction treatments, arising from excessive stimulation of the ovaries by exogenous gonadotropins administrated during in vitro fertilization procedures, which is characterized by massive fluid shift and accumulation in the peritoneal cavity and other organs, including the lungs and the reproductive tract. The pathogenesis of OHSS remains obscure, and no definitive treatments are currently available. Using RT-PCR, Western blot, and electrophysiological techniques we show that cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel expressed in many epithelia, is involved in the pathogenesis of OHSS. Upon ovarian hyperstimulation, rats develop OHSS symptoms, with up-regulated CFTR expression and enhanced CFTR channel activity, which can also be mimicked by administration of estrogen, but not progesterone, alone in ovariectomized rats. Administration of progesterone that suppresses CFTR expression or antiserum against CFTR to OHSS animals results in alleviation of the symptoms. Furthermore, ovarian hyperstimulation does not induce detectable OHSS symptoms in CFTR mutant mice. These findings confirm a critical role of CFTR in the pathogenesis of OHSS and may provide grounds for better assisted reproduction treatment strategy to reduce the risk of OHSS and improve in vitro fertilization outcome.  相似文献   

7.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel critical to intestinal anion secretion. In addition to phosphorylation, vesicle traffic regulates CFTR in some epithelial cells. Studies of cultured intestinal cells are conflicting regarding the role of cAMP-dependent vesicle traffic in regulating chloride transport. Whether CFTR is present in vesicular compartments within chloride secretory cells in the intestine is unknown and the role of cAMP-dependent vesicle insertion in regulating CFTR and intestinal fluid secretion remains unclear. The purpose of this study was to: (1) examine and quantify the subcellular distribution for CFTR in rat intestine, (2) further define the ultrastructure of the previously identified CFTR High Expresser (CHE) cell, and (3) examine the cellular distribution of CFTR following cAMP stimulation in vivo. Using the sensitive techniques of cryoimmunogold electron microscopy we identified CFTR in subapical vesicles and on the apical plasma membrane in crypt, Brunner glands, and CHE cells. cAMP stimulation in rat proximal small intestine produced a fluid secretory response and was associated with an apical redistribution of CFTR, supporting a physiologic role for cAMP-dependent CFTR vesicle insertion in regulating CFTR in the intestine.  相似文献   

8.
9.
Cyst enlargement in polycystic kidney disease (PKD) involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK) cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM) reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h) with steviol (100 microM) also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h) with steviol (100 microM) markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.  相似文献   

10.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel that is present in a variety of epithelial cell types, and usually expressed in the luminal membrane. In contrast, prestin (SLC26A5) is a voltage-dependent motor protein, which is present in the basolateral membrane of cochlear outer hair cells (OHCs), and plays an important role in the frequency selectivity and sensitivity of mammalian hearing. By using in situ hybridization and immunofluorescence, we found that both mRNA and protein of CFTR are present in OHCs, and that CFTR localizes in both the apical and the lateral membranes. CFTR was not detected in the lateral membrane of inner hair cells (IHCs) or in that of OHCs derived from prestin-knockout mice, i.e., in instances where prestin is not expressed. These results suggest that prestin may interact physically with CFTR in the lateral membrane of OHCs. Immunoprecipitation experiments confirmed a prestin-CFTR interaction. Because chloride is important for prestin function and for the efferent-mediated inhibition of cochlear output, the prestin-directed localization of CFTR to the lateral membrane of OHCs has a potential physiological significance. Aside from its role as a chloride channel, CFTR is known as a regulator of multiple protein functions, including those of the solute carrier family 26 (SLC26). Because prestin is in the SLC26 family, several members of which interact with CFTR, we explored the potential modulatory relationship associated with a direct, physical interaction between prestin and CFTR. Electrophysiological experiments demonstrated that cAMP-activated CFTR is capable of enhancing voltage-dependent charge displacement, a signature of OHC motility, whereas prestin does not affect the chloride conductance of CFTR.  相似文献   

11.
The aim of this study was to investigate the functional expression of cystic fibrosis transmembrane conductance regulator (CFTR) with electrophysiological and molecular technique in rat oviduct epithelium. In whole-cell patch clamp, oviduct epithelial cells responded to 100 microM 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) with a rise in inward current in Gap-free mode, which was inhibited successively by 5 microM CFTR(inh)-172, a CFTR specific inhibitor, and 1 mM diphenylamine-2-carboxylate (DPC), the Cl- channel blocker. The cAMP-activated current exhibited a linear current-voltage (I-V) relationship and time- and voltage-independent characteristics. The reversal potentials of the cAMP-activated currents in symmetrical Cl- solutions were close to the Cl- equilibrium, 0.5+/-0.2 mV (n=4). When Cl- concentration in the bath solution was changed from 140 mM to 70 mM and a pipette solution containing 140 mM Cl- was used, the reversal potential shifted to a value close to the new equilibrium for Cl-, 20+/-0.6 mV (n=4), as compared with the theoretic value of 18.7 mV. In addition, mRNA expression of CFTR was also detected in rat oviduct epithelium. Western blot analysis showed that CFTR protein is found in the oviduct throughout the cycle with maximal expression at estrus, and immunofluorescence and immunohistochemistry analysis revealed that CFTR is located at the apical membrane of the epithelial cells. These results showed that the cAMP-activated Cl- current in the oviduct epithelium was characteristic of CFTR, which provided direct evidence for the functional expression of CFTR in the rat oviduct epithelium. CFTR may play a role in modulating fluid transport in the oviduct.  相似文献   

12.
In this study, the expression and functional characterization of CFTR (cystic fibrosis transmembrane regulator) was determined in K562 chronic human leukemia cells. Expression of the CFTR gene product was determined by RT-PCR and confirmed by immunohistochemistry and Western blot analysis. Functional characterization of CFTR Cl- channel activity was conducted with patch-clamp techniques. Forskolin, an adenylyl cyclase activator, induced an anion-selective channel with a linear current-voltage relationship and a single-channel conductance of 11 pS. This cAMP-activated channel had a Pgluconate/PCl or PF/PCl perm-selectivity ratio of 0.35 and 0.30, respectively, and was inhibited by the CFTR blocker glibenclamide and the anti-CFTR antibody MAb 13-1, when added to the cytoplasmatic side of the patch. Glibenclamide decreased the open probability increasing the frequency of open-to-closed transitions. Addition of 200 microM DIDS caused an irreversible block of the channels when added to the cytosolic side of inside-out patches. These and other observations indicate a widespread distribution of CFTR gene expression and suggest that this channel protein may function in most human cells to help maintain cellular homeostasis.  相似文献   

13.
J Zhao  B Zerhusen  J Xie  M L Drumm  P B Davis    J Ma 《Biophysical journal》1996,71(5):2458-2466
We report here distinct rectification of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel reconstituted in lipid bilayer membranes. Under the symmetrical ionic condition of 200 mM KCl (with 1 mM MgCl2 in cis intracellular and 0 MgCl2 in trans extracellular solutions, pH in both solutions buffered at 7.4 with 10 mM HEPES), the inward currents (intracellular-->extracellular chloride movement) through a single CFTR channel were approximately 20% larger than the outward currents. This inward rectification of the CFTR channel was mediated by extracellular divalent cations, as the linear current-voltage relationship of the channel could be restored through the addition of millimolar concentrations of MgCl2 or CaCl2 to the trans solution. The dose responses for [Mg]zero and [Ca]zero had half-dissociation constants of 152 +/- 72 microM and 172 +/- 40 microM, respectively. Changing the pH buffer from HEPES to N-tris-(hydroxymethyl)methyl-2-aminoethanesulfonic acid did not alter rectification of the CFTR channel. The nonlinear conductance property of the CFTR channel seemed to be due to negative surface charges on the CFTR protein, because in pure neutral phospholipid bilayers, clear rectification of the channel was also observed when the extracellular solution did not contain divalent cations. The CFTR protein contains clusters of negatively charged amino acids on several extracellular loops joining the transmembrane segments, which could constitute the putative binding sites for Ca and Mg.  相似文献   

14.
15.
CFTR型氯离子通道研究进展   总被引:2,自引:0,他引:2  
郭晓强 《生命科学》2007,19(2):189-193
囊性纤维化跨膜传导调节因子(CFTR)是一种重要的氯离子通道,突变易引起囊性纤维化病变,故得名。一系列研究表明,CFTR由5个结构域组成:两个跨膜结构域形成氯离子通道;两个核苷酸结合结构域调节通道的开闭;一个调节结构域主要影响氯通道的活动。这些结构域通过协同作用共同控制了氯离子的跨膜流动,而一些突变可以影响细胞功能而导致囊性纤维化的发生。本文通过介绍CFTR基本结构、调节机制、与囊性纤维化病变的关系及针对CFTR的治疗而对CFTR型氯离子通道有一个的全面的理解。  相似文献   

16.
The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-dependent protein kinase (PKA)- and ATP-regulated chloride channel, whose gating process involves intra- or intermolecular interactions among the cytosolic domains of the CFTR protein. Tandem linkage of two CFTR molecules produces a functional chloride channel with properties that are similar to those of the native CFTR channel, including trafficking to the plasma membrane, ATP- and PKA-dependent gating, and a unitary conductance of 8 picosiemens (pS). A heterodimer, consisting of a wild type and a mutant CFTR, also forms an 8-pS chloride channel with mixed gating properties of the wild type and mutant CFTR channels. The data suggest that two CFTR molecules interact together to form a single conductance pore for chloride ions.  相似文献   

17.
18.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed in a wide variety of epithelial cells, mutations of which are responsible for the hallmark defective chloride secretion observed in cystic fibrosis (CF). Although CFTR has been implicated in bicarbonate secretion, its ability to directly mediate bicarbonate secretion of any physiological significance has not been shown. We demonstrate here that endometrial epithelial cells possess a CFTR-mediated bicarbonate transport mechanism. Co-culture of sperm with endometrial cells treated with antisense oligonucleotide against CFTR, or with bicarbonate secretion-defective CF epithelial cells, resulted in lower sperm capacitation and egg-fertilizing ability. These results are consistent with a critical role of CFTR in controlling uterine bicarbonate secretion and the fertilizing capacity of sperm, providing a link between defective CFTR and lower female fertility in CF.  相似文献   

19.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

20.
We have studied the mechanism by which genistein activates cystic fibrosis transmembrane conductance regulator (CFTR) in CHO cells expressing wild type or G551D-CFTR. In wild-type CHO cells, after exposure to 2.5 microM forskolin, 25 microM genistein induced a further 2-fold and rapid increase of the forskolin-activated CFTR current. In both types of cells, when forskolin was added after genistein preincubation, whole-cell current density was greatly reduced compared to that measured when genistein was added after phosphorylation of CFTR, and all activation kinetic parameters were significantly altered. Genistein had no effect on the adenylate cyclase activity. Our results suggest that the occupancy of a putative genistein binding site is critical for the gating mechanism of CFTR chloride channels, which, depending on the phosphorylation status of the R-domain, drives CFTR either into a refractory state or alternatively to a highly activated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号