首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Twenty-nine accessions of Triticum including ancestral diploidsand primitive and modern tetraploid and hexaploid froms wereexamined for differences in yield components. Mean whole plant and main shoot harvest index for the ploidygroups exhibited significant (P < 001) increascs from thediploids to the tetraploids and from the tetraploids to thehexaploids. Mean biological yield per plant for the ploidy groupsincreased significantly (P < 001) from the diploid to thehexaploid but declined significantly (P < 001) from thetetraploid to the hexaploid level. There were marked reductions in shoot number and percentageof infertile shoots per plant and increases in grain numberper spikelet and grain size from diploid what (Triticum monococcum)to the early tetraploids. Yield component variation in early and recent Australian wheatsrevealed that the semi-dwarf (gibberellininsensitive) wheatswere significantly higher in whole plant and main shoot harvestindex over normal height (gibberellin-sensitive) wheats. Triticum aestivum, wheat, Aegilops spp, harvest index, polyploidy, yield components, evolution  相似文献   

2.
Seventy-one wild and primitive diploid accessions of the S-,A- and D-genome species of Aegilops and Triticum, one tetraploidwheat, T. turgidum L. var. durum Desf., ‘Mexicali’,and two hexaploid wheats, T. aestivum L., ‘Anza’and ‘Yecora Rojo’ were evaluated and compared forprotein and lysine contents, carbon isotope discrimination,and various agronomic traits in the 1987–88 season underfield conditions. Significant variability was observed amongthe 71 accessions and among the three genomes for all traits.For most characters, the D-genome species exhibited the mostvariation, followed by the A- and S-genome species. Aegilopssquarrosa, T. urartu, and T. boeoticum showed large variationfor harvest index. Large variation for grain yield was exhibitedby Ae. squarrosa, Ae. sharonensis and Ae. longissima, whichcould be exploited in hybridization and breeding programs withmodern cultivars. The mean protein and lysine values of thediploids were significantly higher than those of the moderncultivars. The S- and A-genome accessions had higher proteinand lysine contents than the D genome. Among genomes, the meanvalues for yield and harvest index were significantly greaterin S- and D-genome accessions than in the A-genome accessions. The correlation pattern between yield and quality traits wasdifferent in the three genomes. Superior accessions with regardto both grain yield and quality traits were identified in eachspecies studied, except Ae. longissima and Ae. sharonensis.The advantages and uses of these accessions in wheat breedingprograms are discussed. Aegilops spp, Triticum spp, protein and lysine contents, yield components, carbon isotope discrimination  相似文献   

3.
Protein inhibitors extracted with water from seeds of Triticum and genetically related species were characterized according to their apparent molecular weights, electrophoretic mobilities and their specificities in inhibiting α-amylases from human saliva and Tenebrio molitor L. larvae. No detectable amylase inhibition activity was found in extracts from diploid wheats, whereas in all tetraploid and hexaploid wheats as well as in the Aegilops species tested we found several amylase inhibitor groups of different molecular weights. In each group, several inhibitor components slightly different in their electrophoretic mobilities, but identical in their inhibition behaviour toward amylases from different origins have been shown. Both from the qualitative and quantitative standpoints, amylase protein inhibitors from hexaploid wheats were the summation of those from tetraploid wheats plus the ones from Aegilops squarrosa. Amylase inhibitors from Aegilops speltoides largely differed from those extracted from tetraploid wheats as well as from all the amylase inhibitors described in plant seeds up to now. These results indicate a relevant homology between the amylase inhibitor coding genes of the D wheat genome and those of the D Aegilops genome and confirm that Ae. squarrosa is the donor of the whole D genome to hexaploid wheats. They also suggest that Ae. speltoides is not the donor of the B genome to polyploid wheats, although a not yet identified Aegilops species might be such a donor.  相似文献   

4.
14CO2 assimilation was studied with diploid, tetraploid, hexaploidspecies of the genera Triticum and their wild relatives Aegilops.Attached mature leaves of 3–4 weekold plants were allowedto undergo photosynthesis under air at ambient temperature.The pattern of distribution of 14C was notably similar in Triticumand Aegilops species whatever the level of ploidy. Sucrose wasthe sink for photosynthetic carbon. 14C for sucrose synthesis was supplied either through the glycolatepathway by glycolate, the product of the photorespiration orby the Calvin cycle intermediates exported into the cytoplasm.Depending on the species, the glycolate pathway provided 40to 75%of the sucrose 14C. The higher labeling of sucrose was associated with the greaterparticipation of the glycolate pathway in the wild diploid (DD)A. squarrosa and in the cultivated hexaploid (AABBDD) T. aestivum.The results suggest that the expression of the male D genomeis dominant over the female AB genome in T. aestivum. In T. aestivum under ambient conditions lowering (low temperature)or hindering (1% O2 ) photorespiration, sucrose labeling decreased,but serine and glycine labeling was favoured. We propose thatin wheat leaves, the role of photorespiration is to drain artof the carbon exported from the chloroplast as glycolate, towardssucrose synthesis. (Received March 16, 1979; )  相似文献   

5.
Greenhouse experiments were carried out with six diploid, ninetetraploid and seven hexaploid wheats, including wild and primitivegenotypes, to study the influence of varied zinc (Zn) supplyon the severity of Zn deficiency symptoms, shoot dry matterproduction and shoot Zn concentrations. In addition to wildand primitive genotypes, one modern tetraploid cultivar withhigh sensitivity to Zn deficiency and two modern hexaploid cultivars,one highly sensitive to and one resistant to Zn deficiency,were included for comparison. Plants were grown for 44 d ina severely Zn-deficient calcareous soil, with (+Zn; 5 mg Znkg-1soil) and without (-Zn) Zn fertilization. Visible Zn deficiencysymptoms, including whitish-brown necrotic patches on leaf blades,appeared very rapidly and severely in all tetraploid wheat genotypes.Compared with tetraploid wheats, diploid and hexaploid wheatswere less sensitive to Zn deficiency. With additional Zn, shootdry matter production was higher in tetraploid than diploidand hexaploid wheats. However, under Zn-deficient conditionstetraploid wheats had the lowest shoot dry matter production,indicating the very high sensitivity of tetraploid wheats toZn deficiency. Consequently, Zn efficiency expressed as theratio of shoot dry matter produced under Zn deficiency to Znfertilization, was much lower in tetraploid wheats than in diploidand hexaploid wheats. On average, Zn efficiency ratios were36% for tetraploid, 60% for diploid and 64% for hexaploid wheats.Differences in Zn efficiency among and within diploid, tetraploidand hexaploid wheats were positively related to the amount ofZn per shoot of the genotypes, but not to the amount of Zn perunit dry weight of shoots or seeds used in the experiments.The seeds of the accessions of tetraploid wild wheats containedup to 120 mg Zn kg-1, but the resulting plants showed very highsensitivity to Zn deficiency. By contrast, hexaploid wheatsand primitive diploid wheats with much lower Zn concentrationsin seeds had higher Zn efficiencies. It is suggested that notonly enhanced Zn uptake capacity but also enhanced internalZn utilization capacity of genotypes play important roles indifferential expression of Zn efficiency. The results of thisstudy also suggest the importance of the A and D genomes asthe possible source of genes determining Zn efficiency in wheat.Copyright 1999 Annals of Botany Company Seeds, Triticum aestivum, Triticum monococcum, Triticum turgidum, zinc concentrations, zinc deficiency, zinc efficiency.  相似文献   

6.
We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.  相似文献   

7.
Two tetraploid (Triticum turgidum L.emend gr. turgidum and gr.durum) and five hexaploid wheats (Triticum x aestivum L. emendgr. aestivum) with reported tendencies for ‘branched heads’(supernurnerary spikelets) exhibited variation in its expressionunder different vernalization photoperiod and temperature regimes. Two main types of supernumerary spikelets were identified, multiplesessile spikelets (MSS) with two or more complete spikeletsat a rachis node and indeterminate rachilla spikelets (IRS)with two to 13 spikelets on an extended rachilla. The degree of supernumerary spikelet expression in wheats withvernalization response differed from those without. Short photoperiods(9–14 h) both outdoors and in a glasshouse environment,were more conducive to supernumerary spikelet expression than24 h photoperiod in both environments. The 24 h photoperiodglasshouse environment (higher mean temperatures) was leastconducive to its expression except in lines with a strong vernalizationresponse. The high stability of supernumerary spikelet expression in certaingenotypes in the different environments indicated the feasibilityof incorporating this character in breeding and selecting commercialwheats to increase grain number per head. Triticum, wheat, ear-branching, supernumerary spikelets, vernalization, photoperiod, temperature  相似文献   

8.
Activities of superoxide dismutase (SOD), catalase (CAT), andperoxidase (POD), as well as malondialdehyde (MDA) contentsand solute potentials, were studied in seedlings of seven wheat(Triticum) species (nine genotypes representing three ploidylevels: hexaploid, tetraploid, diploid) subjected to water stressfor 4, 8, and 12 days by withholding water. Solute potentialsof all genotypes were lowered by water stress. In most species,SOD and CAT activities showed an increase or maintenance inthe early phase of drought and then a decrease with furtherincrease in magnitude of water stress. On the contrary, PODactivities and MDA contents greatly increased in response towater stress. Enzymatic activities partly recovered and MDAcontents decreased with rewatering. Under drought, hexaploidwheats had higher POD activities and MDA contents than tetraploidand diploid wheats; solute potentials and activities of SODand CAT, however, were similar among the three groups. Theseresults suggest that water stress alters the equilibrium betweenfree radical production and enzymatic defense reactions in wheatspecies and that hexaploid wheats have less efficient antioxidantsystems (e.g., the ascorbate-glutathione cycle and the nonenzymaticsystem) than tetraploid and diploid wheats. (Received February 9, 1994; Accepted April 22, 1994)  相似文献   

9.
 An analysis of accessions of Triticum and Aegilops species (86 diploid, 91 tetraploid and 109 hexaploid) was performed using squash-dot hybridization with the tandem repeat Spelt1 sequence as a probe. The Spelt1 sequence is a highly species-specific repeat associated with the telomeric heterochromatin of Aegilops speltoides Boiss. in which its copy numbers vary from 1.5×105 to 5.3×105. The amounts of Spelt1 are sharply decreased in tetraploid and hexaploid species and vary widely from less than 102 to 1.2×104. Two tetraploid wheats, Triticum timopheevii Zhuk. and T. carthlicum Nevski, are exceptional endemic species and within their restricted geographical distributions maintain the amounts of Spelt1 unaltered. The Spelt1 repetitive sequence was localized on the 6BL chromosome of tetraploid wheat Triticum durum Desf. cv ‘Langdon’ by dot-hybridization using D-genome disomic substitution lines. The possible causes of the loss of the telomere-associated tandem repeat Spelt1 in the process of wheat evolution and polyploidization are discussed. Received: 5 March 1998 / Accepted: 28 May 1998  相似文献   

10.
Carbon exchange rate (CER) and transpiration were measured inflag leaves, whole ears, glumes (referring to the total areaof glumes and lemmas) and awns, in six hexaploid spring wheats(Triticum aestivum L.), three cultivated tetraploid spring wheats(T. turgidum L.), four wild tetraploid wheats (T. dicoccoides),eight six-rowed barleys (Hordeum vulgare L.) and five two-rowedbarleys (H. vulgare L.). Differences between varieties and between species in total earCER and transpiration were associated largely with differencesin ear surface area rather than with rates per unit area. Ratesof CER and transpiration per unit area of ears were 40–80%of those of flag leaves, depending on the species. However, since ear surface area was greater than flag leaf areaby a factor of 1.1, 3.9, 5.5 and 4.4, in hexaploid wheat, tetraploidwheat, six-rowed barley, and two-rowed barley, respectively,total ear CER reached up to 90% of that of the flag leaf. The contribution of awns to total ear CER depended largely ontotal awn surface area per ear, rather than on CER per unitawn area. Awns contributed about 40–80% of total spikeCER, depending on the species, but only 10–20% of spiketranspiration. The disproportionately small contribution ofawns to ear transpiration was caused by the very low rate oftranspiration per unit area of awns. Thus, while transpirationratio (CER/transpiration) was about the same in flag leavesand glumes, it was higher by several orders of magnitude inthe awns. A large amount of awns in the ear is therefore a drought adaptiveattribute in these cereals, for which tetraploid wheat exceededhexaploid wheat and six-rowed barley exceeded two-rowed barley. Key words: Carbon exchange rate, Transpiration, Barley, Wheat  相似文献   

11.
Vernalization requirement, as measured by days from sowing toear emergence (plants grown under an 18-h photoperiod), andspikelet number per ear were recorded for 17 synthetic hexaploidwheats and the six tetraploid (Triticum durum) and the ninediploid T. tauschii parents used to synthesize them. The tetraploid parents and the synthetic hexaploids had springphenotypes (little or no vernalization requirement) whereasthe T. tauschii parents were all winter types (strong vernalizationrequirement). The tetraploid wheats and the synthetic hexaploidsreached ear emergence 50·3 to 63·8 d and 58·2to 75·3 d after sowing, respectively, while the T. tauschiilines reached ear emergence 114·3 to 179·5 d aftersowing. The spring habit of the synthetic hexaploids demonstrates theepistasis of spring over winter habit. It is considered thatwith a presumed single vrn locus in the diploid species T. tauschiithe range of ear emergence in these lines is consistent withthe action of multiple alleles at that locus. Although there was no general epistasis for spikelet number,the tetraploid parents appear to be exerting more influenceover spikelet number in the synthetic hexaploids than T. tauschii.The well established association between the duration from sowingto ear emergence and spikelet number was not evident eitherwithin each ploidy group or when the 32 lines were consideredtogether. Triticum tauschii, Triticum durum, hexaploid wheat, spikelet number, vernalization requirement  相似文献   

12.
The RbcS multigene family of hexaploid (bread) wheat, Triticum aestivum (genome BBAADD), which encodes the small subunit of Rubisco, comprises at least 22 genes. Based on their 3′ non-coding sequences, these genes have been classified into four subfamilies (SFs), of which three (SF-2, SF-3 and SF-4) are located on chromosomes of homoeologous group 2 and one (SF-1) on homoeologous group 5. In the present study we hybridized three RbcS subfamily-specific probes (for SF-1, SF-2 and SF-3) to total DNA digested with four restriction enzymes and analyzed the RFLP patterns of these subfamilies in eight diploid species of Aegilops and Triticum, and in two tetraploid and one hexaploid species of wheat (the diploid species are the putative progenitors of the polyploid wheats). The three subfamilies varied in their level of polymorphism, with SF-2 being the most polymorphic in all species. In the diploids, the order of polymorphism was SF-2 > SF-3 > SF-1, and in the polyploids SF-2 > SF-1 > SF-3. The RbcS genes of the conserved SF-1 were previously reported to have the highest expression levels in all the wheat tissues studied, indicating a negative correlation between polymorphism and gene expression. Among the diploids, the species with the D and the S genomes were the most polymorphic and the A-genome species were the least polymorphic. The polyploids were less polymorphic than the diploids. Within the polyploids, the A genome was somewhat more polymorphic than the B genome, while the D genome was the most conserved. Among the diploid species with the A genome, the RFLP pattern of T. urartu was closer to that of the A genome of the common wheat cultivar Chinese Spring (CS) than to that of T. monococcum. The pattern in Ae. tauschii was similar to that of the D genome of CS. Only partial resemblance was found between the RFLP patterns of the species with the S genome and the B genome of CS. Received: 10 February 2000 / Accepted: 21 February 2000  相似文献   

13.
孙婴婴  刘立生  张岁岐 《生态学报》2014,34(16):4488-4498
通过3个不同倍性冬小麦材料(两倍体栽培一粒、四倍体栽培两粒、六倍体现代品种长武134),在不同水分条件下进行密度实验,研究了不同材料的株高、生物量累积和分蘖动态的变化,以及产量对密度变化的反应。结果表明随着群体的增大,不同倍性材料个体间竞争明显加剧,相互抑制作用增强,种群内部个体大小等级差异增大;在不同群体下各倍性材料的个体生长存在差异,表现为四倍体栽培两粒竞争能力两倍体栽培一粒六倍体现代品种长武134,且长武134受种群大小影响最为显著,但长武134产量累积的投入比例最高,产量最高,低竞争能力的个体更适合生产上的需求,是群体高产的基础。研究结果为旱地小麦的高产栽培和育种提供了理论基础。  相似文献   

14.
Plating efficiency of cultured protoplasts of Solanum brevidensincreased to c. 10% after the addition of 5•0 mol m–3glutamine to the culture medium. Growth of protoplast-derivedcolonies at densities of 20 colonies cm–3 was obtainedby lowering the auxin content alter 4–6 d. A sample of50 protoplast-derived plants was examined for chromosomal variation.Twelve plants were diploid (2n=24), 26 were tetraploid (2n=48)and 12 were aneuploid at the tetraploid level (2n=48?). Tetraploidand aneuploid plants had broader leaves and set fewer or noseeds compared to the diploid regenerants which were similarin gross morphology and seed set to control plants. Key words: Solanum brevidens, protoplasts, plant regeneration, variation  相似文献   

15.
Protein profiles of Triticum and Aegilops species were obtained by electrophoresis of crude seed extracts on polyacrylamide gels. All subspecies of the hexaploid T. aestivum (AABBDD) showed a very uniform profile that could be closely simulated only by the pattern produced by a protein mixture (2:1) from specific profile types of the ancient tetraploid cultivar T. dicoccum (AABB) and the wild diploid Ae. squarrosa (DD). An exceptional hexaploid pattern occurred only in some accessions of T. aestivum ssp. macha. These results confirm the parentage of the aestivum hexaploids in general as T. dicoccum and Ae. squarrosa and more specifically identify the type of the D-genome donor. They suggest that these wheats, excepting the aberrant macha types, had essentially a monophyletic origin in southwestern Asia. They favor the hypotheses that the cultivated aestivum wheats were derived from the so-called primitive spelta complex primarily by mutation of a single gene governing the free threshing character and that alpine spelta represents an element displaced from the area of endemism.  相似文献   

16.
Grain Size and Seedling Growth of Wheat at Different Ploidy Levels   总被引:1,自引:0,他引:1  
A study was made of the influence of grain size variation withinand between diploid, tetraploid and hexaploid wheat, on a numberof seedling growth characters. Differences in grain size within the three ploidy levels appearedto be related to total photosynthetic area and dry weight accretionin the seedling. In the diploids there was a positive correlationbetween seed size and total photosynthetic area (r = +0·99,P < 0·01) and total dry weight (r = +0·84,P < 0·05) of the seedling at 10 weeks after emergence.In the tetraploid and hexaploids, seed size was negatively correlatedwith both total photosynthetic area (r = –0·69,P < 0·05 and r = –0·33, P < 0·05for the tetraploids and hexaploids respectively) and total dryweight (r = –0·69, P < 0·05 and r = –0·59,P < 0·05 for the tetraploids and hexaploids respectively),of the seedlings 10 weeks after emergence. The main physiological distinction between the tetraploids andhexaploids appeared to be the superiority of the hexaploidsin rate of leaf appearance and the lower ratio of expanded tounexpanded leaves in the seedling 10 weeks after emergence.The tetraploids, in turn, appeared to be superior to the diploidsin these two characters. Triticum spp., wheat, polyploidy, grain size, photosynthetic area, net assimilation rate, tiller number  相似文献   

17.
Quantitative anatomical and other measurements were made onfully expanded flag leaves of a series of diploid, tetraploidand hexaploid Triticum and Aegilops species, and photosyntheticrates per unit leaf area were measured at light saturation (Pmax). Diploids had the highest Pmax, hexaploids the lowest with tetraploidsbeing intermediate. The anatomical features of tetraploids andhexaploids were generally similar, but different from the diploids.The diploids had thinner leaves with less dry matter and chlorophyllper unit area. The surface area of the mesophyll cells per unitvolume of mesophyll tissue was similar for all ploidy levels,as was the ratio mesophyil cell surface area per unit leaf area.It is argued that while these anatomical features are unlikelyto account for the observed variation in Pmax, it is possiblethat other structural factors with which they are correlatedmay causally influence Pmax. One such feature is the averagediffusion path length from the plasmalemma at the cell surfaceto the sites of carboxylation. Anatomy, photosynthesis, mesophyll, cell size, Triticum, Aegilops, polyploidy  相似文献   

18.
Meiotic restitution is considered to be a common mechanism of polyploidization in plants and hence is one of the most important processes in plant speciation. Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled haploid (DH) line), grown at two planting dates in the field. In addition, two local landraces of emmer wheat (Triticum turgidum ssp. dicoccum), one wheat cultivar (Chinese spring), one DH triticale cultivar (Eleanor) and one rye accession were included. Immature spikes of mid-autumn and end-winter sowing plants were collected in April and May 2008, respectively, fixed in Carnoy’s solution and stained with hematoxylin. Pollen mother cells (PMCs) from anthers at different stages of meiotic process were analysed for their chromosomal behaviour and irregularities. Meiotic aberrations such as laggards, chromosome bridges, micronuclei, abnormal cytokines, chromatin pulling and meiotic restitution were observed and the studied genotypes were accordingly ranked as follows: triticale > synthetic hexaploid wheats > tetraploid wheats possessing meiotic restitution > tetraploid wheats lacking meiotic restitution > rye. The results indicated that the samples that had been planted in the autumn, thus experiencing an optimum temperature level at the flowering stage, exhibited less meiotic irregularities than winter planting samples that encountered heat stress at the flowering period.  相似文献   

19.
Summary Protein -amylase inhibitors extracted with water from seeds of a number of Triticum and Aegilops species were characterized according to their molecular weights and action specificities towards human salivary and Tenebrio molitor L. -amylases. Four inhibitor peaks, with molecular weights 60000, 44000, 22000 and 11000, active towards the two amylases have been detected. Another inhibitor peak with molecular weight 11000, only active towards the insect -amylase, has been found in several species tested. Triticum urartu showed only the 22000 inhibitor peak, while other diploid Triticum species did not exhibit any inhibitory activity. All the diploid Aegilops species tested contained -amylase inhibitors and the inhibitor patterns differed greatly even for closely related species. In general, tetraploid Triticum species (turgidun and timopheevi) exhibited amylase inhibitor patterns of higher complexity than diploid Triticum and Aegilops species.The relationships existing among the amylase inhibitor patterns of the Triticinae species tested are consistent with the hypothesis of the polyphyletic origin of tetraploid wheats by Sarkar and Stebbins (1956) and suggest that the amylase inhibitors from diploid species all derive from common ancestral genes.  相似文献   

20.
The effect of genotype and plant density, over the range from100 to 277 plants m–2, on plant to plant variation inprecision sown microplots has been assessed for three ‘leafless’(afafstst) pea (Pisum sativum) lines. This range of plantingdensities did not significantly affect the total above groundbiological yield per unit area of two of the genotypes (BS5and BS4) whereas the biological yield of the third (BS151) declinedat densities above 156 plants m–2. The differences weredue to changes in seed yield. The effect of planting densityon the variation between plants for biological yield withinthe microplots differed between the genotypes. The distributionpattern of BS4 and BS5 changed from normal to skewed with increaseddensity, while the distribution for BS151 remained skewed atall planting densities. The differences between the three genotypes in the proportionof biological yield partitioned into seed yield (harvest index)on a unit area basis was due almost entirely to the differencesin structure of the plant populations. The maximum level ofpartitioning by individual plants was similar for all threelines. The difference between this maximum for an individualand the crop harvest index therefore represents the area forimprovement of crop harvest index through breeding. It is suggestedthat improvements in dried pea yields will come, therefore,by selecting plants which form more uniform populations withregard to plant size and to the proportion of plant biomasspartitioned into seed (plant harvest index). Pisum sativum, leafless pea, population, genetic variation, distribution patterns, harvest index  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号