首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) latent infection depends on the viral episomes in the nucleus being distributed to daughter cells following cell division. The latency-associated nuclear antigen (LANA) is constitutively expressed in all KSHV-infected cells. LANA binds sequences in the terminal repeat regions of the KSHV genome and tethers the viral episomes to chromosomes. To better understand the mechanism of chromosomal tethering, we performed glutathione S-transferase (GST) affinity and yeast two-hybrid assays to identify LANA-interacting proteins with known chromosomal association. Two of the interactors were the methyl CpG binding protein MeCP2 and the 43-kDa protein DEK. The interactions of MeCP2 and DEK with LANA were confirmed by coimmunoprecipitation. The MeCP2-interacting domain was mapped to the previously described chromatin binding site in the N terminus of LANA, while the DEK-interacting domain mapped to LANA amino acids 986 to 1043 in the C terminus. LANA was unable to associate with mouse chromosomes in chromosome spreads of transfected NIH 3T3 cells. However, LANA was capable of targeting to mouse chromosomes in the presence of human MeCP2 or DEK. The data indicate that LANA is tethered to chromosomes through two independent chromatin binding domains that interact with different protein partners.  相似文献   

9.
The Kaposi's sarcoma-associated herpesvirus (KSHV) LANA protein functions in latently infected cells as an essential participant in KSHV genome replication and as a driver of dysregulated cell growth. To identify novel LANA protein-cell protein interactions that could contribute to these activities, we performed a proteomic screen in which purified, adenovirus-expressed Flag-LANA protein was incubated with an array displaying 4,192 nonredundant human proteins. Sixty-one interacting cell proteins were consistently detected. LANA interactions with high-mobility group AT-hook 1 (HMGA1), HMGB1, telomeric repeat binding factor 1 (TRF1), xeroderma pigmentosum complementation group A (XPA), pygopus homolog 2 (PYGO2), protein phosphatase 2A (PP2A)B subunit, Tat-interactive protein 60 (TIP60), replication protein A1 (RPA1), and RPA2 proteins were confirmed in coimmunoprecipitation assays. LANA-associated TIP60 retained acetyltransferase activity and, unlike human papillomavirus E6 and HIV-1 TAT proteins, LANA did not reduce TIP60 stability. The LANA-bound PP2A B subunit was associated with the PP2A A subunit but not the catalytic C subunit, suggesting a disruption of PP2A phosphatase activity. This is reminiscent of the role of simian virus 40 (SV40) small t antigen. Chromatin immunoprecipitation (ChIP) assays showed binding of RPA1 and RPA2 to the KSHV terminal repeats. Interestingly, LANA expression ablated RPA1 and RPA2 binding to the cell telomeric repeats. In U2OS cells that rely on the alternative mechanism for telomere maintenance, LANA expression had minimal effect on telomere length. However, LANA expression in telomerase immortalized endothelial cells resulted in telomere shortening. In KSHV-infected cells, telomere shortening may be one more mechanism by which LANA contributes to the development of malignancy.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Kaposi's sarcoma-associated herpesvirus (KSHV) DNA persists in latently infected cells as an episome via tethering to the host chromosomes. The latency-associated nuclear antigen (LANA) of KSHV binds to the cis-acting elements in the terminal repeat (TR) region of the genome through its carboxy terminus. Previous studies have demonstrated that LANA is important for episome maintenance and replication of the TR-containing plasmids. Here we report that LANA associates with origin recognition complexes (ORCs) when bound to its 17-bp LANA binding cognate sequence (LBS). Chromatin immunoprecipitation of multiple regions across the entire genome from two KSHV-infected cell lines, BC-3 and BCBL-1, revealed that the ORCs predominantly associated with the chromatin structure at the TR as well as two regions within the long unique region of the genome. Coimmunoprecipitation of ORCs with LANA-specific antibodies shows that ORCs can bind and form complexes with LANA in cells. This association was further supported by in vitro binding studies which showed that ORCs associate with LANA predominantly through the carboxy-terminal DNA binding region. KSHV-positive BC-3 and BCBL-1 cells arrested in G(1)/S phase showed colocalization of LANA with ORCs. Furthermore, replication of The TR-containing plasmid required both the N- and C termini of LANA in 293 and DG75 cells. Interestingly, our studies did not detect cellular ORCs associated with packaged viral DNA as an analysis of purified virions did not reveal the presence of ORCs, minichromosome maintenance proteins, or LANA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号