首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mouse mastocytoma P815 cell membranes were found to possess adenosine binding sites as assessed by using the adenosine agonist [3H]5'-N-ethylcarboxamideadenosine (NECA). The Kd and Bmax for the [3H]NECA binding at 0 degrees C were 380 nM and 17 pmol/mg of protein, respectively. The rank order of potency for inhibition of [3H]NECA binding was NECA greater than 5'-N-cyclopropylcarboxamideadenosine greater than 2-chloroadenosine greater than 2',5'-dideoxyadenosine greater than isobutylmethylxanthine greater than theophylline greater than N6-[(R)-1-methyl-2-phenylethyl]adenosine = N6-[(S)-1-methyl-2- phenylethyl]adenosine. Thermodynamic analyses of the adenosine receptor agonist and antagonist binding showed that all such ligands displayed negative values of both enthalpy and entropy which suggested that the driving force for the binding was enthalpic. [3H]NECA binding sites of P815 cell membranes were solubilized with sodium cholate and retaining the same ligand-binding characteristics as those of the membrane-bound form. By gel filtration on a Sepharose CL-6B column, the adenosine binding site was estimated to have a Stokes radius of approximately 6.7 nm.  相似文献   

2.
Examination of the binding characteristics of the adenosine agonist radioligands [3H]N6-cyclohexyladenosine [( 3H]CHA), [3H]cyclopentyladenosine [( 3H]CPA), and [3H]5'-N-ethylcarboxamido adenosine [( 3H]NECA) to membranes prepared from PC12 cells showed that the A-1-selective ligands (CHA and CPA) had minimal binding, which was not amenable to analysis using curve-fitting programs. However, [3H]NECA, a nonselective A-1/A-2 agonist, gave reproducible binding, which was enhanced by removal of endogenous adenosine, using the catabolic enzyme adenosine deaminase. This binding was of high affinity (KD = 4.7 nM) with limited capacity (263 fmol/mg of protein). Specific binding of [3H]NECA was unaffected by the presence of either CPA (50 nM) or MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM), a finding suggesting involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. Binding of [3H]NECA to PC12 cell membranes was stereo-selective, with the R isomer of N6-phenylisopropyladenosine (PIA) being approximately 12 times more active than S-PIA. The A-1-selective agonist CPA was a weak inhibitor of [3H]NECA binding (Ki = 251 nM). The rank order of activity of adenosine agonists in displacing specific [3H]NECA binding was NECA greater than or equal to 2-chloroadenosine greater than CHA greater than or equal to 5'-N-methylcarboxamido adenosine greater than or equal to R-PIA greater than CPA greater than S-PIA. Binding was also displaced by the marine adenosine agonist 1-methylisoguanosine and by a series of xanthine antagonists with the activity order being 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 8-phenyltheophylline greater than 8-p-sulfophenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The studies reported here involve an exploration of the sites on atrial myocyte membranes with which adenosine interacts to produce its potent physiological effects in atrial muscle. Specific, high affinity binding of the stable adenosine analogs 2-chloro[3H]adenosine (2-ClAdo) and [3H]adenosine 5'-N-ethylcarboxamide (NECA) to atrial sarcolemmal membranes was measured in kinetic and equilibrium studies at 4 degrees C and 35 degrees C. Analysis of the [3H]2-ClAdo binding isotherm indicated the presence of two classes of binding site with equilibrium Kassoc values estimated to be 5.7 X 10(7) M-1 and 2.7 X 10(6) M-1. Displacement of bound [3H]2-ClAdo by adenosine 5'-N-cyclopropylcarboxamide (NCPCA) and by several N6-substituted adenosine analogs confirmed the presence of two classes of binding site. Analysis of the [3H]NECA binding also revealed the presence of two types of binding site for this ligand. The methylxanthines isobutylmethylxanthine and theophylline displaced bound [3H]2-ClAdo whereas adenosine uptake inhibitors and several other purines showed little activity. These atrial membrane binding sites exhibit many of the characteristics of the physiological adenosine receptors studied in intact atria. Furthermore, the [3H]2-ClAdo binding sites were sensitive to treatment with proteolytic enzymes, suggesting that these sites exist on sarcolemmal membrane proteins.  相似文献   

4.
Characterization of A-2 Receptors in Postmortem Human Pineal Gland   总被引:1,自引:0,他引:1  
We have examined the binding of the adenosine agonist radioligands [3N]N6-cyclohexyladenosine ([3H]CHA) and [3H]5'-N-ethylcarboxamidoadenosine ([3H]NECA) to membranes prepared from postmortem human pineal glands. The results showed that the A-1-specific ligand CHA did not bind to membranes. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 68% specific binding of the total binding. This specific binding was nearly insensitive to the N-ethyl-maleimide pretreatment method. To characterize this binding, we used cyclopentyladenosine (50 nM). Under those conditions [3H]NECA binding at 30 degrees C was rapid and reversible; the KD determined from the kinetic studies was 141 nM. In postmortem human pineal gland, the rank order of potency of adenosine analogues and drugs competing with [3H]NECA showed the specificity for an A-2 receptor: NECA greater than 2-chloroadenosine greater than L-N6(2-phenylisopropyl)adenosine greater than 8-phenyltheophylline greater than 3-isobutyl-1-methylxanthine greater than caffeine. Guanylylimidodiphosphate (100 microM) induced a decrease in the affinity of [3H]NECA, a result suggesting the involvement of a G protein mechanism in the coupling of the adenosine receptor to other components of the receptor complex. Scatchard analysis revealed one class of binding sites for [3H]NECA with KD and Bmax ranging from 175 to 268 nM and 11.0 to 14.1 pmol/mg protein, respectively. The binding of [3H]NECA was not affected by age, sex, or postmortem delay. [3H]NECA should be a useful tool to assess brain A-2 receptor density in a variety of neuropsychiatric disorders.  相似文献   

5.
The adenosine receptors in the plasma membrane of chromaffin cells from bovine adrenal medulla were characterized. The presence of A1 receptors was discounted owing to the absence of R-[3H]phenylisopropyladenosine (R-PIA) and [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]-DPCPX) binding. The binding of the specific A2a ligand CGS-21680 was low. In contrast, the binding of 5'-(N-[3H]-ethylcarboxamidoadenosine ([3H]NECA) was relatively high (1.7 pmol/mg of protein at a ligand concentration up to 90 nM). This binding did not correspond to non-adenosine receptor NECA binding sites because the specific [3H]-NECA binding was similar when unlabeled adenosine, NECA, or R-PIA was used to measure the nonspecific binding. The rank order of potency of different ligands for the displacement of specific [3H]NECA binding was DPCPX greater than NECA greater than chloroadenosine greater than R-PIA greater than theophylline = CGS-21680. These results indicate that the receptors present on the plasma membrane of chromaffin cells are exclusively of the A2b subtype.  相似文献   

6.
Binding sites were solubilized from human placental membrane using 1.5% sodium cholate and were assayed using polyethylene glycol precipitation. These soluble binding sites had properties of an adenosine A1 binding site. 2-[3H]Chloroadenosine and N-[3H]-ethylcarboxamidoadenosine (NECA) binding were time dependent and reversible. Scatchard plots indicate two classes of binding sites with Kd values of 6 and 357 nM for 2-chloro[8-3H]adenosine and 0.1 and 26 nM with [3H]NECA. The specificity of [3H]NECA binding was assessed by the ability of adenosine analogs to complete for binding sites. Using this approach the estimated IC50 values were 60 nM for (R-PIA), 160 nM for S-PIA, 80 nM for NECA, and 20 nM for 2-chloroadenosine. Binding of [3H]NECA to the soluble sites is inhibited to 48% of the control value by 100 microM guanylyl-5'-imidodiphosphate (Gpp(NH)p). The IC50 value for NECA binding to the soluble binding site was increased from 80 nM to 1500 by Gpp(NH)p. There was a shift of binding affinity from a mixture of high and low affinity to only low affinity with 100 microM Gpp(NH)p. Despite these alterations a NECA prelabeled molecular species of 150 kDa did not decrease in molecular weight upon the addition of 100 microM Gpp(NH)p during high-performance liquid chromatography on a Superose 12 column. Other evidence to support the concept of preferential solubilization and assay of a small population of A1 binding sites was obtained. Following solubilization adenosine A2-like binding sites could be detected only in reconstituted vesicles. The existence of small amounts of A1 binding sites in intact human placental membranes was directly demonstrated using the A1 agonist ligand N6-[3H]cyclohexyladenosine and the A1 antagonist ligand 8-[3H]cyclopentyl-1,3-dipropylxanthine. JAR choriocarcinoma cells have "A2-like" membrane binding sites. In contrast to placental membranes, only A2-like binding sites could be solubilized from JAR choriocarcinoma cells. These observations indicate that human placental membranes contain adenosine A1 binding sites in addition to A2-like binding sites. These sites are guanine nucleotide sensitive, but do not shift to a lower molecular weight form upon assumption of a low affinity state.  相似文献   

7.
A new radiolabeled adenosine receptor agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadeno sin e (CGS 21680), apparently specific for high-affinity binding sites of the A2 subtype in rat brain, was used to identify and pharmacologically characterize adenosine receptors in human brain. The binding of [3H]CGS 21680, as determined by standard radioligand binding technique in the presence of exogenously added adenosine deaminase, reached equilibrium after 40 min at 25 degrees C. In saturation studies, a single class of high-affinity binding sites with values for KD of 22 +/- 0.5 nM and Bmax of 444 +/- 63 fmol/mg of protein were observed. Similar binding characteristics were observed regardless of whether rapid filtration or centrifugation was used to separate bound versus free ligand. Of the 14 brain regions examined, [3H]CGS 21680 binding was highest in putamen, followed by globus pallidus and caudate nucleus. The level of [3H]CGS 21680 binding in these areas of basal ganglia was identical to 5'-N-[3H]ethylcarboxamidoadenosine ([3H]NECA) binding in the presence of 50 nM N6-cyclopentyladenosine (CPA). The rank order of agonist potencies as determined by a series of competition experiments was NECA greater than or equal to CGS 21680 greater than 2-chloroadenosine greater than N6-(R)-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6-(S)-phenylisopropyladenosine. This potency order was the same for the binding of [3H]CGS 21680 to rat, and of [3H]NECA in the presence of 50 nM CPA to rat and human, brain membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A 5'-N-ethylcarboxamido[3H]adenosine ([3H]NECA) binding site of mouse mastocytoma P815 cell membranes has been purified approximately 100-fold by affinity chromatography. This adenosine binding site, which has a similar specificity to that of the A2 adenosine receptor, was absorbed on NECA-linked Sepharose 6B and eluted with NECA. The adsorption of the [3H]NECA binding site to the affinity matrix was specifically blocked by NECA. The [3H]NECA binding site bound on the affinity matrix was also specifically eluted by NECA. This affinity matrix adsorbed approximately 90% of the digitonin-solubilized [3H]NECA binding activity applied, and after the gel was washed, 30-50% of the adsorbed binding activity could be eluted with 500 microM NECA with specific binding activity of 50-70 pmol/mg of protein. The affinity-purified [3H]NECA binding site retained the same ligand binding specificities as the original membrane preparation. The results indicate that the NECA-Sepharose Sepharose 6B should provide a powerful tool for the eventual purification of [3H]NECA binding sites of P815 cell membranes.  相似文献   

9.
Adenosine specifically inhibits superoxide anion generation by N-formyl-methionyl-leucyl-phenylalanine-stimulated neutrophils without affecting either degranulation or "aggregation." We present data that also supports the hypothesis that adenosine engages a specific cell surface receptor to mediate inhibition of stimulated neutrophils. Theophylline (10 and 100 mu M), a competitive antagonist at adenosine receptors, reversed the effects of adenosine (0.1 mu M) on superoxide anion generation by stimulated neutrophils. The adenosine analogue 5'N-ethylcarboxamidoadenosine (NECA) was a more potent inhibitor of superoxide anion generation than either N6-phenylisopropyladenosine (PIA) or adenosine, an order of potency consistent with that previously demonstrated for adenosine A2 receptors. 2-Chloroadenosine inhibited superoxide anion generation at concentrations similar to NECA. [3H]-NECA and [3H]-2-chloroadenosine bound to a single receptor on intact neutrophils. The characteristics of the receptors for [3H]-NECA and [3H]-2-chloroadenosine were similar (Kd = 0.22 and 0.23 mu M, respectively; number of binding sites = 9.31 and 11.1 X 10(3) sites/cell, respectively). NECA, 2-chloroadenosine, adenosine, and PIA inhibited binding of [3H]-NECA with a rank order similar to that for inhibition of superoxide anion generation (NECA = 2-chloroadenosine greater than adenosine greater than PIA). There was 50% inhibition of superoxide anion generation by NECA at approximately 20% receptor occupancy. Adenosine, derived from damaged tissues, may serve as a specific, endogenous modulator of superoxide anion generation by activated neutrophils through interaction at this newly described receptor on human neutrophils.  相似文献   

10.
We have examined the binding of the adenosine agonist radioligands [3H]cyclohexyladenosine [( 3H]CHA), R-N6-[3H]phenylisopropyladenosine [( 3H]R-PIA), and 5'-N-ethylcarboxamido[3H]adenosine [( 3H]NECA) to membranes prepared from rat pineal gland. The results showed that the A-1-selective ligands (CHA and R-PIA) had less than or equal to 10% specific binding. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 72% specific binding of the total binding. This specific binding was insensitive to cyclopentyladenosine (50 nM) or R-PIA (50 microM). To characterize this binding, we used the N-ethylmaleimide pretreatment method. Under these conditions, this binding was of high affinity with a KD of 51 +/- 10 nM and an apparent Bmax of 1,060 +/- 239 fmol/mg of protein. Specific binding was unaffected by the presence of MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM) (-25%), a result suggesting the involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. The rank of activity of adenosine analogues in displacing specific [3H]NECA binding was NECA greater than 2-chloroadenosine greater than S-adenosyl-L-homocysteine greater than CHA. Binding was also displaced by 3-isobutyl-1-methylxanthine (IC50 = 23.6 microM). These findings are consistent with the selective labeling by [3H]NECA of an A-2-type adenosine receptor in rat pineal membranes.  相似文献   

11.
A xanthine amine congener (XAC), an amine-functionalized derivative of 1,3-dipropyl-8-phenylxanthine, is an antagonist ligand for A2 adenosine receptors of human platelets. XAC inhibited 5'-N-ethylcarboxamidoadenosine (NECA)-induced stimulation of adenylate cyclase activity with a KB of 24 nM. [3H]XAC exhibits saturable, specific binding with a Kd of 12 nM and a Bmax of 1.1 pmol/mg protein at 37 degrees C. [3H]XAC binding in platelets is the first example of labeling of A2 adenosine receptors in which the potencies of adenosine agonists and antagonists in inhibiting binding are commensurate with their potencies at these receptors in functional studies. Furthermore, [3H]XAC is the first antagonist radioligand with high affinity at A2 adenosine receptors.  相似文献   

12.
Discrete Distributions of Adenosine Receptors in Mammalian Retina   总被引:7,自引:6,他引:1  
Binding sites for both the adenosine A1 receptor agonists [3H]phenylisopropyladenosine and [3H]cyclohexyladenosine and the mixed A1-A2 agonist N-[3H]ethylcarboxamidoadenosine [( 3H]NECA) were localized in rabbit and mouse retinas using autoradiographic techniques. These two classes of agonists bound to very different regions of mammalian retinas. A1 agonist binding was localized to the inner retina, particularly over the inner plexiform layer. The binding of [3H]NECA was observed primarily over the retinal pigmented epithelium and the outer and inner segments of photoreceptors. [3H]NECA labeling was not affected either by including a low concentration of unlabeled A1 agonist or by pretreating tissue with N-ethylmaleimide to inhibit ligand binding at A1 sites. While virtually all of the [3H]NECA binding was displaced by an excess of unlabeled NECA, displacement with antagonist or a large excess of cyclohexyladenosine revealed that approximately 30% of the [3H]NECA binding was at non-A1,A2 sites. The majority of the binding in the outer retina thus labeled A2 receptor sites. The unique localizations of the two classes of adenosine receptors suggest different functions in visual processing.  相似文献   

13.
J C Gordon  H C Rowland 《Life sciences》1990,46(20):1435-1442
In rat pheochromocytoma (PC12) cells, nerve growth factor (7S NGF) induced the expression of recognition sites that bind the specific 5-HT3 antagonist (S-) [3H]zacopride. Culturing PC12 cells for 8-12 days in the presence of 50 ng/ml NGF increased the density (Bmax) of (S-) [3H]zacopride binding sites in cell membranes (0-100,000 x g fraction) from 0 to 105 fmoles/mg protein. This binding exhibited high affinity for (S-) [3H]zacopride (Kd = 0.8 nM), was specific (greater than 95%), and was inhibited by 5-HT3 compounds with a rank of potency (quipazine greater than ICS 205-930 greater than GR38032F greater than BRL24924 approximately MDL 72222 greater than phenylbiguanide greater than or equal to serotonin greater than 2-methyl-serotonin greater than metoclopramide) which was distinct from neuroblastoma cells. Thus, NGF-differentiated PC12 cells possess a 5-HT3 receptor and should be useful to investigate its regulation and biochemical mechanism of action.  相似文献   

14.
Abstract

The binding characteristics of radiolabeled N6-(cyclohexyl)adenosine ([3H]CHA), N6-(R-phenylisopropyl)adenosine ([3H]R-PIA), 5′-N-ethylcarboxamidoadenosine ([3H]NECA), and 2-[4-(2-carboxyethyl)phenyl]ethyl-amino-5′-N-ethylcarboxamidoadenosine ([3H]CGS 21680), to rat testis membranes were investigated. Specific binding of [3H]CGS 21680, a selective agonist for the A2a adenosine receptor, was very modest whilst the nonselective agonist [3H]NECA bound to rat testis membranes showing high binding capacity. At least two types of binding sites for [3H]NECA could be identified in rat testis membranes: high affinity sites and high capacity sites. Selective agonists for the At adenosine receptor, [3H]CHA and [3H]R-PIA bound with high affinity to a single class of binding sites. This high affinity binding site showed the typical pharmacological specificity of the A1 adenosine receptor with a potency order for agonists of CHA R-PIA > NECA > N6-(S-phenylisopropyl)adenosine (S-PIA). In order to detect the presence of the A3 adenosine receptor in these membranes we selectively blocked the A1 receptor with a large molar excess of a xanthine antagonist, either 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) or xanthine amine congener (XAC). In the presence of an antagonist a low affinity binding site for [3H]CHA and [3H]R-PIA was detected. This low affinity binding site showed a different pharmacological specificity than the high affinity binding site. In fact the potency order for agonists was CHA NECA = R-PIA > S-PIA. This finding suggests that the low affinity binding site represents the A3 adenosine receptor.  相似文献   

15.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   

16.
The human red blood cell ghost Ca2+-antagonist binding sites were characterized with (+/-)-[3H]nimodipine. The labelled 1,4-dihydropyridine bound in a non-cooperative, reversible manner with a Kd of 52 nM at 25 degrees C to 9.65 pmol sites/mg ghost protein. The stereochemistry of the binding domain was evaluated with the optically pure enantiomers of chiral 1,4-dihydropyridines. In contrast to the 1,4-dihydropyridine-selective receptors on Ca2+ channels in electrically excitable tissues, the (+) enantiomer of nimodipine and the (-) enantiomer of the benzoxadiazol 1,4-dihydropyridine (PN 200-110) were bound with higher affinity than the respective optical antipodes. The human red blood cell ghost [3H]nimodipine-labelled sites also interacted with the inorganic Ca2+-antagonist La3+ (increase in the number of binding sites), and were allosterically regulated by the optical enantiomers of the phenylalkylamine-type Ca2+-antagonists (e.g. verapamil, desmethoxyverapamil, methoxyverapamil). The benzothiazepines d- or l-cis-diltiazem were without effect. Nucleosides (adenosine approximately equal to inosine greater than cytidine) were inhibitory at the nimodipine-labelled site, as were the nucleoside uptake inhibitors dipyridamole, hexobendine, dilazep, nitrobenzylthioinosine and nitrobenzylthioguanosine. The binding sites have essential sulfhydryl groups, show trypsin sensitivity, but are relatively heat stable. When nitrobenzylthioinosine was employed as a covalent probe to inactivate the red blood cell ghost nucleoside carrier, [3H]nimodipine binding was irreversibly lost. (+)-Nimodipine greater than (-)-nimodipine inhibited [14C]adenosine transport into human red blood cells. A good correlation between IC50 values for inhibition of [3H]nimodipine binding and IC50 values for inhibition of [14C]adenosine uptake was found for 18 compounds. Sheep red blood cells (which lack the nucleoside transporter) had no detectable [3H]nimodipine binding sites. It is concluded that the Ca2+-antagonist receptor sites of the human erythrocyte are coupled to the nucleoside transporter.  相似文献   

17.
An approximate 140-fold purification of the A1 adenosine receptor of bovine cerebral cortex has been obtained via affinity chromatography. The affinity column consists of Affi-Gel 10 coupled through an amide linkage to XAC, a high-affinity A1 adenosine receptor antagonist. As assessed by [3H]XAC binding, bovine brain membranes solubilized with the detergent CHAPS had a specific binding activity of 1.1 pmol/mg protein. Interaction of solubilized A1 adenosine receptors with the XAC-Affi-Gel was biospecific and 30% of the receptor activity was bound by the gel. Demonstration of [3H]XAC binding in the material eluted from the column with R-PIA required insertion of receptor into phospholipid vesicles. The specific activity of the affinity column purified receptor was 146 +/- 22 pmol/mg protein with typically 5-15% of the bound receptor recovered. The purified receptor displayed high-affinity antagonist binding and bound agonists with the potency order expected of the bovine brain A1 adenosine receptor: R-PIA greater than S-PIA greater than NECA. In purified preparations, the photoaffinity probe [125I]PAPAXAC-SANPAH specifically labelled a protein of molecular mass 38,000 which has previously been shown to be the A1 adenosine receptor binding subunit.  相似文献   

18.
Extracellular adenosine is transported into chromaffin cells by a high-affinity transport system. The action of adenosine receptor ligands was studied in this cellular model. 5'-(N-Ethylcarboxamido)adenosine (NECA), an agonist of A2 receptors, activated adenosine transport. Km values for adenosine were 4.6 +/- 1.0 (n = 5) and 10.2 +/- 3.0 microM (n = 5) for controls and 100 nM NECA, respectively. The Vmax values were 66.7 +/- 23.5 and 170.2 +/- 30 pmol/10(6) cells/min for controls and 100 nM NECA, respectively. The A1 agonist N6-cyclohexyladenosine, the A1 antagonist 8-cyclopentyl-1, 3-dipropylxanthine, and the A1-A2 antagonist 1,3-dipropyl-8-(4-[(2-aminoethyl)amino]-carbonylmethyloxyphenyl)- xanthine did not significantly modify the adenosine transport in this system. Binding studies done with [3H]dipyridamole, a nucleoside transporter ligand, did not show changes in either the number or affinity of transporter sites after NECA treatment. This ligand can enter cells and quantifies the total number of transporters. The binding studies with [3H]-nitrobenzylthioinosine, which quantifies the plasma membrane transporters, showed a Bmax of 19,200 +/- 800 and 23,200 +/- 700 transporters/cell for controls and 100 nM NECA, respectively. No changes in the KD were obtained. The effects of NECA were not mediated through adenylate cyclase activation, because its action was not imitated by forskolin.  相似文献   

19.
The binding of [3H]muscimol, a gamma-aminobutyrate (GABA) receptor agonist, to a membrane preparation from pig cerebral cortex was enhanced by the anaesthetic propanidid in a concentration-dependent manner. At 0 degrees C, binding was stimulated to 220% of control values, with 50% stimulation at 60 microM-propanidid. At 37 degrees C, propanidid caused a more powerful stimulation of [3H]muscimol binding (340% of control values). Propanidid (1 mM) exerted little effect on the affinity of muscimol binding (KD approx. 10 nM), but increased the apparent number of high-affinity binding sites in the membrane by 2-fold. Enhancement of [3H]muscimol binding was observed only in the presence of Cl- ions, half-maximal activation being achieved at approx. 40 mM-Cl-. Picrotoxinin inhibited the stimulation of [3H]muscimol binding by propanidid with an IC50 (concentration causing 50% inhibition) value of approx. 25 microM. The enhancement of [3H]muscimol binding by propanidid was not additive with the enhancement produced by secobarbital. Phenobarbital inhibited the effect of propanidid and secobarbital. The GABA receptor was solubilized with Triton X-100 or with Chaps [3-[(3-cholamidopropyl)dimethylammonio]propanesulphonate]. Propanidid and secobarbital did not stimulate the binding of [3H]muscimol after solubilization with Triton X-100. However, the receptor could be solubilized by 5 mM-Chaps with retention of the stimulatory effects of propanidid and secobarbital. Unlike barbiturates, propanidid did not stimulate the binding of [3H]flunitrazepam to membranes. It is suggested that the ability to modulate the [3H]muscimol site of the GABA-receptor complex may be a common and perhaps functional characteristic of general anaesthetics.  相似文献   

20.
The specific binding protein for prostaglandin (PG) E2 was solubilized in an active form from the crude mitochondrial (P2) fraction of porcine cerebral cortex. After incubation with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) at 4 degree C for 30 min, the PGE2 binding to the supernatant fraction (103,000 g, 60 min) was determined by the polyethylene glycol method. The maximum yield (approximately 30% of the binding activity to the P2 fraction) was obtained with 10 mM CHAPS. The specific [3H]PGE2 binding to the solubilized fraction was time-dependent and the equilibrium was reached at around 60 min at 37 degrees C. By dilution of the reaction mixture, the binding site-[3H]PGE2 complex formed after 5-min incubation slowly dissociated, whereas that formed after 60-min incubation did not dissociate to a significant extent. The binding was highly specific for PGE2 and inhibited by unlabeled PGs in the following order: PGE2 greater than PGE1 much greater than PGF2 alpha greater than PGE2 methyl ester greater than PGA2 greater than 13,14-dihydro-15-keto-PGE2 greater than PGD2. Scatchard analyses of the solubilized fraction suggested the presence of high- and low-affinity sites. Heat treatment and preincubation with trypsin or proteinase K markedly reduced the binding. The binding activity was eluted in a single peak both from gel filtration and from ion-exchange columns using HPLC. These results suggest that a specific protein solubilized may be responsible for the binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号