共查询到20条相似文献,搜索用时 0 毫秒
1.
Aoi W Naito Y Nakamura T Akagiri S Masuyama A Takano T Mizushima K Yoshikawa T 《The Journal of nutritional biochemistry》2007,18(2):140-145
Milk fermented with a starter containing Lactobacillus helveticus and Saccharomyces cerevisiae is drunk on a daily basis by many people in Japan and has several beneficial effects. We studied the influence of this fermented milk product on muscle damage after prolonged exercise in rats. Wistar rats were divided into four groups: rested controls, rested rats given fermented milk diet, exercised rats and exercised rats given fermented milk diet. After 3 weeks of acclimatization, both exercise groups were made to run on a treadmill at 26 m/min for 60 min. Exercise increased the serum creatine kinase level, as well as myeloperoxidase activity and the level of thiobarbituric-acid-reactive substances in the gastrocnemius muscle after 24 h. These changes were ameliorated by intake of fermented milk. An increase of CINC-1 was also ameliorated by fermented milk. Furthermore, milk diet increased the mRNA and protein levels of protective proteins such as antioxidants and chaperone proteins. These results indicate that fermented milk can ameliorate delayed-onset muscle damage after prolonged exercise, which is associated with an increased antioxidant capacity of muscles. 相似文献
2.
E Chiaradia L Avellini F Rueca A Spaterna F Porciello M.T Antonioni A Gaiti 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》1998,119(4):833-836
Since it has been suggested that lipid peroxidation following free radical overproduction may be one of the causes of physical exercise-induced myopathies and hemolysis in horses, we looked for the possible relationships between these phenomena and muscle fiber damage. We use a homogeneous group of Maremmana stallions which, after a 3-month training period, underwent a series of physical exercises of increasing intensity. We determined the contents of malondialdehyde (MDA), one of the main lipid peroxidation end-products, and glutathione the substrate of one of the most important free radical scavenger enzymes. We also measured creatine phosphokinase and serum lactate dehydrogenase isoenzyme activities whose modification may be indicative of muscle fiber damage. The results obtained indicated that the physical exercise we adopted was able to modify both MDA and glutathione contents in blood. However, its effect on some LDH isoenzyme activities suggested possible damage to tissues other than muscle. 相似文献
3.
Beck TW Housh TJ Johnson GO Schmidt RJ Housh DJ Coburn JW Malek MH Mielke M 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(3):661-667
This investigation examined the effects of a protease supplement on selected markers of muscle damage and delayed-onset muscle soreness (DOMS). The study used a double-blinded, placebo-controlled, crossover design. Twenty men (mean +/- SD age = 21.0 +/- 3.1 years) were randomly assigned to either a supplement group (SUPP) or a placebo group (PLAC). All subjects were tested for unilateral isometric forearm flexion strength, hanging joint angle, relaxed arm circumference, subjective pain rating, and plasma creatine kinase activity and myoglobin concentration. The testing occurred before (TIME1), immediately after (TIME2), and 24 (TIME3), 48 (TIME4), and 72 (TIME5) hours after a bout of eccentric exercise. During these tests, the subjects in the SUPP group ingested a protease supplement. The subjects in the PLAC group took microcrystalline cellulose. After testing at TIME5 and 2 weeks of rest, the subjects were crossed over into the opposite group and performed the same tests as during visits 1-5, but with the opposite limb. Overall, isometric forearm flexion strength was greater (7.6%) for the SUPP group than for the PLAC group, despite nearly identical (difference = 0.14 N.m, p = 0.940) mean strength values before (TIME1) the eccentric exercise protocol. There were no between-group differences for hanging joint angle, relaxed arm circumference, subjective pain ratings, and plasma creatine kinase activity and myoglobin concentration from TIME1 to TIME5. These findings provided initial evidence that the protease supplement may be useful for reducing strength loss immediately after eccentric exercise and for aiding in short-term strength recovery. The protease supplement had no effect, however, on the perception of pain associated with DOMS or the blood markers of muscle damage. 相似文献
4.
Scott K Powers Andreas N Kavazis Joseph M McClung 《Journal of applied physiology》2007,102(6):2389-2397
Skeletal muscle inactivity is associated with a loss of muscle protein and reduced force-generating capacity. This disuse-induced muscle atrophy results from both increased proteolysis and decreased protein synthesis. Investigations of the cell signaling pathways that regulate disuse muscle atrophy have increased our understanding of this complex process. Emerging evidence implicates oxidative stress as a key regulator of cell signaling pathways, leading to increased proteolysis and muscle atrophy during periods of prolonged disuse. This review will discuss the role of reactive oxygen species in the regulation of inactivity-induced skeletal muscle atrophy. The specific objectives of this article are to provide an overview of muscle proteases, outline intracellular sources of reactive oxygen species, and summarize the evidence that connects oxidative stress to signaling pathways contributing to disuse muscle atrophy. Moreover, this review will also discuss the specific role that oxidative stress plays in signaling pathways responsible for muscle proteolysis and myonuclear apoptosis and highlight gaps in our knowledge of disuse muscle atrophy. By presenting unresolved issues and suggesting topics for future research, it is hoped that this review will serve as a stimulus for the expansion of knowledge in this exciting field. 相似文献
5.
Serum and urinary markers of skeletal muscle tissue damage after weight lifting exercise 总被引:1,自引:0,他引:1
G. L. Paul J. P. DeLany J. T. Snook J. G. Seifert T. E. Kirby 《European journal of applied physiology and occupational physiology》1989,58(7):786-790
The purpose of this study was to determine whether high intensity weight lifting exercise produces elevations of urinary 3-methylhistidine (3-MH), serum creatine kinase activity (CK), and serum myoglobin concentration (MY), and whether trained weight lifters differed in such responses when compared to a group of untrained subjects. Ten experienced male weight lifters (EWL) and seven untrained male subjects (IWL) performed three sets of six weight lifting exercises at 70%-80% of 1 RM. All subjects consumed a meat-free diet. The 3-MH:creatinine (3-MH:CR) values decreased 24 h and 48 h following exercise (P less than 0.05). The 12-h and 24-h postexercise CK response and the 12-h postexercise MY response increased for both EWL and IWL (P less than 0.05). However, EWL had a lower 24-h postexercise CK response and lower 12-h and 24-h postexercise MY responses compared to IWL (P less than 0.05). Within 48 h following weight lifting exercise, skeletal muscle protein degradation (as assessed by 3-MH:CR values) decreased regardless of prior training experience whereas skeletal muscle tissue damage (as assessed by CK and MY responses) increased. However, prior weight lifting training appeared to diminish the extent of muscle tissue damage. 相似文献
6.
Oxidative stress: damage to intact cells and organs 总被引:6,自引:0,他引:6
H Sies E Cadenas 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1985,311(1152):617-631
Oxidative cell damage can be monitored by detection of (a) photoemission of singlet molecular oxygen formed from radical interactions (so-called low-chemical chemiluminescence), (b) end products of lipid peroxidation, such as ethane, and (c) glutathione disulphide release. These methods, preferably used in a complementary fashion, provide insight into the pro-oxidant-antioxidant balance in the intact cell or organ. Recent work from this laboratory on the metabolism of hydroperoxides and aldehydes as well as on redox cycling of the quinone menadione is presented. The comparison of GSSG transport systems in liver and heart reveals a limitation of capacity in the latter, thus making GSSG export potentially critical in the heart. As part of an inter-organ feedback system between extrahepatic tissues and liver, the newly described hormone stimulation of GSH release from liver is also presented. 相似文献
7.
Oxidative stress in athletes during extreme endurance exercise 总被引:6,自引:0,他引:6
Despite the many known health benefits of exercise, there is a body of evidence suggesting that endurance exercise is associated with oxidative stress. To determine whether extreme endurance exercise induces lipid peroxidation, 11 athletes (3 females, 8 males) were studied during a 50 km ultramarathon (trial 1) and during a sedentary protocol (trial 2) 1 month later. The evening before each trial, with dinner, subjects consumed 75 mg each d(3)-RRR and d(6)-all rac-alpha-tocopheryl acetates. Blood was obtained at baseline, 30 min pre-race, mid-race, post-race, 1 h post-race, 24 h post-race, and at corresponding times during trial 2. All 11 subjects completed the race; average run time was 391 +/- 23 min. Plasma F(2)-isoprostanes increased from 75 +/- 7 pg/ml at pre-race to 131 +/- 17 (p <.02) at post-race, then returned to baseline at 24 h post-race; F(2)-isoprostanes were unchanged during trial 2. Deuterated alpha-tocopherol disappearance rates were faster (2.8 x 10(-4) +/- 0.2 x 10(-4)) during the race compared to the sedentary trial (2.3 x 10(-4) +/- 0.2 x 10(-4); p <.03). These data suggest that extreme endurance exercise results in the generation of lipid peroxidation with a concomitant increase in vitamin E disappearance. 相似文献
8.
Effect of vitamin supplementation on cytokine response and on muscle damage after strenuous exercise 总被引:2,自引:0,他引:2
Petersen EW Ostrowski K Ibfelt T Richelle M Offord E Halkjaer-Kristensen J Pedersen BK 《American journal of physiology. Cell physiology》2001,280(6):C1570-C1575
The present double-blinded, placebo-controlled study investigated whether antioxidant vitamin supplementation was able to modulate the cytokine and lymphocyte responses after strenuous eccentric exercise. Furthermore, muscle enzyme release was examined to see whether antioxidant treatment could reduce muscle damage. Twenty male recreational runners randomly received either antioxidants (500 mg of vitamin C and 400 mg of vitamin E) or placebo for 14 days before and 7 days after a 5% downhill 90-min treadmill run at 75% .VO(2 max). Although the supplemented group differed significantly with regard to plasma vitamin concentration before and after exercise when compared with the placebo group, the two groups showed identical exercise-induced changes in cytokine, muscle enzyme, and lymphocyte subpopulations. The plasma level of interleukin (IL)-6 and IL-1 receptor antagonist increased 20- and 3-fold after exercise. The plasma level of creatine kinase was increased sixfold the day after exercise. The concentrations of CD4+ memory T cells, CD8+ memory and na?ve T cells, and natural killer cells increased at the end of exercise. The total lymphocyte concentration was below prevalues in the postexercise period. In conclusion, the present study does not support the idea that exercise-induced inflammatory responses are induced by free oxygen radicals. 相似文献
9.
H Hatta 《The Annals of physiological anthropology》1990,9(2):213-218
Metabolic fate of lactate after strenuous exercise which lasted 2-3 min was investigated in rats and mice. 14C-labeled lactate or glucose was injected into the aorta of rats through an catheter. 14C-glucose was injected intraperitoneally into the mice after supramaximal exercise. The mice ran twice with a 4 hr interval to investigate muscle 14C-lactate metabolism which was produced from muscle 14C-glycogen. A great deal of blood and muscle 14C-lactate was expired as 14CO2 after the exercise. The results indicate that oxidative removal is the major fate of lactate metabolism after strenuous exercise and that blood glucose is the major substrate for muscle glycogen resynthesis. Light intensity exercise after strenuous exercise (active recovery) enhances oxidative removal of blood and muscle lactate. Gluconeogenesis from lactate to glycogen within the skeletal muscle is not a major pathway of muscle lactate metabolism, while high intensity training can activate this pathway. 相似文献
10.
Cabiscol E Piulats E Echave P Herrero E Ros J 《The Journal of biological chemistry》2000,275(35):27393-27398
We have analyzed the proteins that are oxidatively damaged when Saccharomyces cerevisiae cells are exposed to stressing conditions. Carbonyl groups generated by hydrogen peroxide or menadione on proteins of aerobically respiring cells were detected by Western blotting, purified, and identified. Mitochondrial proteins such as E2 subunits of both pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, aconitase, heat-shock protein 60, and the cytosolic fatty acid synthase (alpha subunit) and glyceraldehyde-3-phosphate dehydrogenase were the major targets. In addition we also report the in vivo modification of lipoamide present in the above-mentioned E2 subunits under the stressing conditions tested and that this also occurs with the homologous enzymes present in Escherichia coli cells that were used for comparative analysis. Under fermentative conditions, the main protein targets in S. cerevisiae cells treated with hydrogen peroxide or menadione were pyruvate decarboxylase, enolase, fatty acid synthase, and glyceraldehyde-3-phosphate dehydrogenase. Under the stress conditions tested, fermenting cells exhibit a lower viability than aerobically respiring cells and, consistently, increased peroxide generation as well as higher content of protein carbonyls and lipid peroxides. Our results strongly suggest that the oxidative stress in prokaryotic and eukaryotic cells shares common features. 相似文献
11.
Hackney KJ Engels HJ Gretebeck RJ 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(5):1602-1609
The purpose of this investigation was to determine the effect of an acute bout of high-volume, full-body resistance training with an eccentric concentration on resting energy expenditure (REE) and indicators of delayed-onset muscle soreness (DOMS). Eight resistance trained (RT) and eight untrained (UT) participants (mean: age = 23.5 years; height = 180.76 cm; weight = 87.58 kg; body fat = 19.34%; lean mass = 68.71 kg) were measured on four consecutive mornings for REE and indicators of DOMS: creatine kinase (CK) and rating of perceived muscle soreness (RPMS). Delayed-onset muscle soreness was induced by performing eight exercises, eight sets, and six repetitions using a 1-second concentric and 3-second eccentric muscle action duration. A two-factor repeated-measures analysis of variance revealed that REE was significantly (p < 0.05) elevated at 24, 48, and 72 hours post compared with baseline measures for both UT and RT groups. Ratings of perceived muscle soreness were significantly elevated within groups for UT and RT at 24 and 48 hours post and for UT only at 72 hours post compared with baseline (p < 0.05). Nonparametric analyses revealed that CK was significantly increased at 24 hours post for both UT and RT and at 48 and 72 hours post for UT only compared with baseline (p < 0.05). Resting energy expenditure and indicators of DOMS were higher in UT compared with RT on all measures, but no significant differences were determined. The main finding of this investigation is that full-body resistance training with an eccentric concentration significantly increased REE up to 72 hours postexercise in UT and RT participants. 相似文献
12.
We did a double-blind, placebo-controlled crossover study of 10 healthy young men taking no medications to determine if ingesting lovastatin is associated with more severe muscle damage after exercise. Five men in the first group took 40 mg of lovastatin daily for 30 days while those in the second group took an identical-appearing placebo. Each volunteer then walked downhill on a -14-degree incline on a treadmill at 3 km per hour for an hour. After a 2-week rest, the subjects were crossed over. Serial serum creatine kinase activity was measured immediately before and 8, 24, 48, 72, 120, and 144 hours after each treadmill session. With each subject serving as his own control, peak mean serum creatine kinase activity (/+- SEM) following treadmill after lovastatin therapy was similar to that following placebo (168.4 +/- 25.8 U per liter versus 146.7 +/- 14.7 U per liter, respectively [P = .9]). With an alpha value of .05, we had greater than a 99% chance of detecting a difference in the rise of serum creatine kinase activity of 200 U per liter between groups. Our data suggest that lovastatin is not an independent risk factor for developing exercise-induced muscle damage using this model of exercise in our study population. 相似文献
13.
Autophagy is a catabolic process aimed at recycling cellular components and damaged organelles in response to diverse conditions of stress, such as nutrient deprivation, viral infection and genotoxic stress. A growing amount of evidence in recent years argues for oxidative stress acting as the converging point of these stimuli, with reactive oxygen species (ROS) and reactive nitrogen species (RNS) being among the main intracellular signal transducers sustaining autophagy. This review aims at providing novel insight into the regulatory pathways of autophagy in response to glucose and amino acid deprivation, as well as their tight interconnection with metabolic networks and redox homeostasis. The role of oxidative and nitrosative stress in autophagy is also discussed in the light of its being harmful for both cellular biomolecules and signal mediator through reversible posttranslational modifications of thiol-containing proteins. The redox-independent relationship between autophagy and antioxidant response, occurring through the p62/Keap1/Nrf2 pathway, is also addressed in order to provide a wide perspective upon the interconnection between autophagy and oxidative stress. Herein, we also attempt to afford an overview of the complex crosstalk between autophagy and DNA damage response (DDR), focusing on the main pathways activated upon ROS and RNS overproduction. Along these lines, the direct and indirect role of autophagy in DDR is dissected in depth. 相似文献
14.
A E Donnelly P M Clarkson R J Maughan 《European journal of applied physiology and occupational physiology》1992,64(4):350-353
The effects of performing light eccentric exercise (LB) during the period of recovery from a heavy eccentric exercise bout (HB) were studied. An experimental and a control group, each consisting of nine college age volunteers (seven women, two men) performed two HB--HB1 and HB2--14 days apart, using the elbow flexor and extensor muscles of one arm. The experimental group performed an additional LB on the day following the first HB. HB1 resulted in muscle soreness, muscle weakness, changes in elbow joint flexibility, and large delayed increases in serum creatine kinase (CK) activity. The HB2 produced smaller changes in all parameters, indicating that adaptation to the effects of eccentric exercise had occurred in the muscle. The LB did not alter muscle soreness, strength or elbow flexibility, but did reduce or delay CK activity increase after HB1. The LB had no apparent effect on adaptation to HB2. 相似文献
15.
16.
Park SJ Ciccone SL Beck BD Hwang B Freie B Clapp DW Lee SH 《The Journal of biological chemistry》2004,279(29):30053-30059
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function. 相似文献
17.
18.
19.
Tofas T Jamurtas AZ Fatouros I Nikolaidis MG Koutedakis Y Sinouris EA Papageorgakopoulou N Theocharis DA 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(2):490-496
The aim of the present study was to examine the effect of acute plyometric exercise on indices of muscle damage and collagen breakdown. Nine untrained men performed an intense bout of plyometric jumping exercises (experimental group) and nine men remained at rest (control group). Seven days before and 24, 48, and 72 hours after plyometric exercise or rest, several physiological and biochemical indices of muscle damage and two biochemical indices of collagen damage were determined. No significant changes in concentric and eccentric peak torque of knee extensors and flexors or flexion and extension range of motion were found after the plyometric exercise. Delayed-onset muscle soreness increased 48 hours after exercise. Creatine kinase increased 48 and 72 hours post exercise, whereas lactate dehydrogenase increased 24, 48, and 72 hours post exercise. Serum hydroxyproline increased 24 hours post exercise, peaked at 48 hours, and remained elevated up to 72 hours post exercise. Hydroxylysine (which was measured only before exercise and at 48 hours) was found increased 48 hours post exercise. No differences were found in any physiological or biochemical index in the control group. Intense plyometric exercise increased muscle damage, delayed-onset muscle soreness, and serum indices of collagen breakdown without a concomitant decrease in the functional capacity of muscles. Hydroxyproline and hydroxylysine levels in serum seem promising measures for describing exercise-induced collagen degradation. Coaches need to keep in mind that by using plyometric activities, despite the increased muscle damage and collagen turnover that follow, it is not necessarily accompanied by decreases in skeletal muscle capacity. 相似文献
20.
Oxidative stress during the chronic phase after stroke 总被引:3,自引:0,他引:3
Stroke is a complex disease originating and developing on the background of genetic predisposition and interaction between different risk factors that chronically damage blood vessels. The search for an effective treatment of stroke patients is the main priority of basic and clinical sciences. The chronic phase of stroke provides possibilities for therapy directed toward stimulation of recovery processes as well as prophylaxis, which reduces the probability of subsequent cerebrovascular events. Oxidative stress is a potential contributor to the pathophysiological consequences of stroke. The aim of the present review is to summarize the current knowledge of the role of oxidative stress during the chronic phase after stroke and its contribution to the initiation of subsequent stroke. The relationship among inflammation, hemostatic abnormalities, and platelet activation in chronic stroke patients is discussed in the context of ongoing free radical processes and oxidative damage. Free radical-mediated effects of increased plasma level of homocysteine and its possible contribution to the processes leading to recurrent stroke are discussed as well. The status of the antioxidant defense system and the degree of oxidative damage in the circulation of stroke survivors are examined. The results are interpreted in view of the effects of the vascular risk factors for stroke that include additional activation of inflammatory and free radical mechanisms. Also, the possibilities for combined therapy including antioxidants in the acute and convalescent stages of stroke are considered. Future investigations are expected to elucidate the role of free radical processes in the chronic phase after stroke and to evaluate the prophylactic and therapeutic potential of anti-radical agents. 相似文献