首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integration of pCI192, a pBR322-derived vector plasmid containing homology to the chromosomally located conjugative transposon Tn919 was observed in two strains that harbor Tn919, namely, Enterococcus faecalis GF590 and Lactococcus lactis subsp. lactis CH919. Hybridization analysis indicated that single-copy integration of the plasmid had occurred at low frequency. The Tn919::plasmid structure was conjugated from an E. faecalis donor to a L. lactis recipient, although at lower frequencies than was Tn919. Segregation of the tetracycline and chloramphenicol resistance markers during conjugation was observed. The integration strategy described allows for DNA manipulations to be performed in an easily manipulated model host strain with the subsequent transfer of integrated structures by conjugation to any strain capable of receiving Tn919. The results indicate that homologous recombination events may be used to introduce plasmid-encoded genes to the lactococcal chromosome.  相似文献   

2.
In matings between Lactococcus lactis strains, the conjugative transposons Tn916 and Tn919 are found in the chromosome of the transconjugants in the same place as in the chromosome of the donor, indicating that no transposition has occurred. In agreement with this, the frequency of L. lactis transconjugants from intraspecies matings is the same whether the donor contains the wild-type form of the transposon or the mutant Tn916-int1, which has an insertion in the transposon's integrase gene. However, in intergeneric crosses with Bacillus subtilis or Enterococcus faecalis donors, Tn916 and Tn919 transpose to different locations on the chromosome of the L. lactis transconjugants. Moreover, Tn916 and Tn919 could not be transferred by conjugation from L. lactis and B. subtilis, E. faecalis or Streptococcus pyogenes. This suggests that excision of these elements does not occur in L. lactis. When cloned into E. coli with adjacent chromosomal DNA from L. lactis, the conjugative transposons were able to excise, transpose and promote conjugation. Therefore, the inability of these elements to excise in L. lactis is not caused by a permanent structural alteration in the transposon. We conclude that L. lactis lacks a factor required for excision of conjugative transposons.  相似文献   

3.
Lactococcus lactis subsp. lactis MG1363 can act as a conjugative donor of chromosomal markers. This requires a chromosomally located fertility function that we designate the lactococcal fertility factor (Laff). Using inter- and intrastrain crosses, we identified other L. lactis strains (LMO230 and MMS373) that appear to lack Laff. The selectable marker in our crosses was Tcr, carried by Tn916, a transposon present on the chromosome. The transfer of Tcr was not due to Tn916-encoded conjugative functions, because (i) L. lactis cannot act as a donor in Tn916-promoted conjugation (F. Bringel, G. L. Van Alstine, and J. R. Scott, Mol. Microbiol. 5:2983-2993, 1992) and (ii) transfer occurred when the Tcr marker was present in a Tn916 derivative containing a mutation, tra-641, that prevents Tn916-directed conjugation in any host. In addition, we isolated a strain in which Tn916 appears to be linked to Laff; this strain should be useful for further analysis of this fertility factor. In this strain, Tn916 is on the same 600-kb SmaI fragment as Clu, a fertility factor previously shown to promote lactose plasmid transfer in L. lactis. Thus, it is possible that Clu and Laff are identical.  相似文献   

4.
Abstract: The conjugative transposon Tn 919 was introduced at high frequency to L. lactis subsp. lactis biovar. diacetylactis 18-16 and transconjugants were screened for mutations in two chromosomally located genotypes; citrate metabolism and maltose utilization. A citrate negative mutant, lacking citritase activity, was isolated at a frequency of 1.18 × 10−4. The mutant, 18-16C5, contained a single copy of Tn 919 in a chromosomal location. A junction fragment of Tn 919 ::18-16C5 chromosomal DNA was cloned in Escherichia coli . Mutations in maltose metabolism were detected at a frequency of 4.0 × 10−4. No mutants were detected when Tn 919 was not introduced. Reversion to a Mal+ phenotype occurred at high frequency, but was not due to Tn 919 transposition.  相似文献   

5.
A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin resistance plasmid pVA797::Tn917 from S. faecalis V1229 to S. faecalis V1102 in alginate beads occurred at frequencies comparable to those achieved with filter matings. The results demonstrated efficient conjugal transfer of plasmid DNA among alginate-immobilized streptococcal cells and suggested that this method could be used as an alternative to conventional solid-surface and filter matings with these organisms.  相似文献   

6.
pMV158, a non-self-transmissible plasmid encoding tetracycline resistance, was conjugally transferred from Enterococcus faecalis JH203 to Lactococcus lactis subsp. lactis IL1403. This transfer appeared to be dependent on the cotransfer of the conjugative plasmids pAM beta 1 or pIP501. Intraspecies conjugal transfer of pMV158 also occurred in strain IL1403. In contrast to the transfer from E. faecalis, transfer in IL1403 did not require the presence of a conjugative plasmid in the donor strain but, rather, appeared to be dependent on putative chromosomal functions in strain IL1403. The transfer of pMV158 from strain IL1403 required the presence of an active pMV158-encoded protein, which showed homology to the Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from Staphylococcus aureus, such as pT181.  相似文献   

7.
A rapid and simple technique was developed for conjugation between group N and group D streptococci by using cells entrapped within calcium alginate gel beads. With this method, the frequencies of transfer of lactose metabolism from Streptococcus lactis ME2 to S. lactis LM2302 were comparable to those achieved with agar surface matings. Conjugal transfer of the chloramphenicol and erythromycin resistance plasmid pVA797::Tn917 from S. faecalis V1229 to S. faecalis V1102 in alginate beads occurred at frequencies comparable to those achieved with filter matings. The results demonstrated efficient conjugal transfer of plasmid DNA among alginate-immobilized streptococcal cells and suggested that this method could be used as an alternative to conventional solid-surface and filter matings with these organisms.  相似文献   

8.
Integration and excision of plasmid DNA in Lactococcus lactis subsp. lactis   总被引:4,自引:0,他引:4  
F Hayes  J Law  C Daly  G F Fitzgerald 《Plasmid》1990,24(2):81-89
The capacity of the 75-kb lactose-proteinase plasmid pCI301 from Lactococcus lactis subsp. lactis UC317 to recombine with the lactococcal chromosome was examined. Low-frequency integration of pCI301 sequences was detected following protoplast transformation of strain MG136Sm with total plasmid DNA from strain UC317. Excision of integrated sequences was subsequently observed at a low level. Excised sequences were rescued through recombination with and mobilization by the conjugative enterococcal plasmid pAMB1. Transconjugants harboring novel recombinant pCI301::pAMB1 plasmids, both pAMB1 and a pCI301 derivative, and pAMB1 only were isolated. The latter represents a class of transconjugant in which an elevated level of reintegration of pCI301 DNA in the recipient chromosome has occurred.  相似文献   

9.
A novel 51-kb conjugative transposon of Lactococcus lactis, designated Tn6098, encoding the capacity to utilize α-galactosides such as raffinose and stachyose, was identified and characterized. Alpha-galactosides are a dominant carbon source in many plant-derived foods. Most dairy lactococcus strains are unable to use α-galactosides as a growth substrate, yet many of these strains are known to have beneficial industrial traits. Conjugal transfer of Tn6098 was demonstrated from the plant-derived donor strain L. lactis KF147 to the recipient L. lactis NZ4501, a derivative of the dairy model strain L. lactis MG1363. The integration of Tn6098 into the genome of the recipient strain was confirmed by Illumina sequencing of the transconjugant L. lactis NIZO3921. The molecular structure of the integration site was confirmed by a PCR product spanning the insertion site. A 15-bp direct repeat sequence (TTATACCATAATTAC) is present on either side of Tn6098 in the chromosome of L. lactis KF147. One copy of this sequence is also present in the L. lactis MG1363 chromosome and represents the sole integration site. Phenotypic characterization of all strains showed that the transconjugant has not only acquired the ability to grow well in soy milk, a substrate rich in α-galactosides, but also has retained the flavor-forming capabilities of the recipient strain L. lactis MG1363. This study demonstrates how (induced) conjugation can be used to exploit the beneficial industrial traits of industrial dairy lactic acid bacteria in fermentation of plant-derived substrates.  相似文献   

10.
J L Steele  L L McKay 《Plasmid》1989,22(1):32-43
Conjugal transfer of genetic material by Lactococcus lactis subsp. lactis 11007 was examined. A plasmid of 88 MDa (pJS88) was identified in addition to the previously reported conjugally transferred plasmids of 32 (pKB32) and 4.8 MDa. Proteinase activity, reduced bacteriophage sensitivity, bacteriocin resistance, and conjugal transfer ability were encoded by pJS88. The ability to metabolize lactose (Lac+) was encoded by pKB32, and the 4.8-MDa plasmid was cryptic. When a strain containing both pKB32 and pJS88 was mated with a recipient deficient in host-mediated homologous recombination (Rec-), a plasmid of 40 MDa (pJS40) was observed in approximately 50% of the Lac+ transconjugants. DNA-DNA hybridization results indicated that pJS40 contained homology with both pKB32 and pJS88. These results indicated that pKB32 was conjugally transferred via conduction and suggested that pJS40 is a deletion derivative of a pKB32::pJS88 cointegrate. A Rec- strain containing pKB32 and pJS88 mediated Lac+ conjugal transfer, suggesting that the pKB32::pJS88 cointegrate could form via a rec-independent event. Resolution of the pKB32::pJS88 cointegrate was observed in both Rec- and Rec+ hosts. Cointegrate formation and resolution via rec-independent mechanisms suggest the involvement of a transposable element in the Tn3 family.  相似文献   

11.
The Ll.LtrB group II intron from the low-G+C gram-positive bacterium Lactococcus lactis was the first bacterial group II intron shown to splice and mobilize in vivo. This retroelement interrupts the relaxase gene (ltrB) of three L. lactis conjugative elements: plasmids pRS01 and pAH90 and the chromosomal sex factor. Conjugative transfer of a plasmid harboring a segment of the pRS01 conjugative plasmid including the Ll.LtrB intron allows dissemination of Ll.LtrB among L. lactis strains and lateral transfer of this retroelement from L. lactis to Enterococcus faecalis. Here we report the dissemination of the Ll.LtrB group II intron among L. lactis strains following conjugative transfer of the native chromosomally embedded L. lactis sex factor. We demonstrated that Ll.LtrB dissemination is highly variable and often more efficient from this integrative and conjugative element than from an engineered conjugative plasmid. Cotransfer among L. lactis strains of both Ll.LtrB-containing elements, the conjugative plasmid and the sex factor, was detected and shown to be synergistic. Moreover, following their concurrent transfer, both mobilizable elements supported the spread of their respective copies of the Ll.LtrB intron. Our findings explain the unusually high efficiency of Ll.LtrB mobility observed following conjugation of intron-containing plasmids.  相似文献   

12.
Conjugative transfer of the transposon Tn919 to lactic acid bacteria   总被引:1,自引:0,他引:1  
Abstract The streptococcal transposon Tn 919 was transferred from Streptococcus faecalis GF590 to selected Group N Streptococcus strains and to one strain each of Lactobacillus plantarum and Leuconostoc cremoris , using the filter mating method. An S. lactis MG1363 Rifr Tcr transconjugant also acted as a donor, but was less efficient than GF590. Frequencies of transfer varied between 4.0 × 10−8 and 5.29 × 10−5 per recipient. Further analysis of S. lactis MG1363 Smr Tcr transconjugants showed that insertion of Tn 919 into the chromosome was site-specific.  相似文献   

13.
pIP501 is a streptococcal conjugative plasmid which can be transmitted among numerous gram-positive strains. To identify a minimal mobilization (mob) locus of pIP501, DNA fragments of pIP501 were cloned into nonconjugative target plasmids and tested for mobilization by pIP501. We show that nonmobilizable plasmids containing a specific fragment of pIP501 are transmitted at high frequencies between Lactococcus lactis subsp. lactis strains if transfer (tra) functions are provided in trans by a pIP501 derivative. Independent transfer of the mobilized plasmid was observed in up to 44% of transconjugants. A 2.2-kb segment containing mob was sequenced. This DNA segment is characterized by three palindromes (palI, palII, and palIII) and a 202-amino-acid open reading frame (ORFX) of unknown function. The smallest DNA fragment conferring high frequency mobilization was localized to a 1.0-kb region (extending from pIP501 coordinates 3.60 to 4.60 on the 30.2-kb map) which contains palI (delta G = -27 kcal/mol [ca. -110,000 J/mol]). A 26-bp sequence identical to palI is present on pIP501, upstream of the plasmid copy control region. Further homologies with the palI sequence are also found with the related Enterococcus faecalis conjugative plasmid pAM beta 1. The region containing mob maps outside the previously described segment mediating pIP501 conjugation. Our results with recA strains indicate that the mob site is a hot spot for cointegrate formation.  相似文献   

14.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

15.
The tetracycline resistance plasmid pCF10 (58 kilobases [kb]) of Streptococcus faecalis possesses two separate conjugation systems. A 25-kb region of the plasmid (designated TRA) was shown previously to determine pheromone response and conjugation functions required for transfer of pCF10 between S. faecalis cells (P. J. Christie and G. M. Dunny, Plasmid 15:230-241, 1986). When S. faecalis cells were mixed with Bacillus subtilis in broth, tetracycline resistance was transferred from S. faecalis. The tetracycline-resistant B. subtilis cells contained a 16-kb region of pCF10 (distinct from TRA) that carried the tetracycline resistance determinant (Tetr). This Tetr element was found to transfer between S. faecalis and B. subtilis strains in the absence of plasmids. Genetic and molecular techniques were used to establish locations of the element at several different sites on the B. subtilis chromosome. The Tetr element could be transferred in filter matings from B. subtilis to S. faecalis strains and between recombination-proficient and -deficient S. faecalis strains in the absence of any plasmid DNA. The transfer required direct cell-to-cell contact and was not inhibited by DNase. The Tetr element was shown to transpose from the S. faecalis chromosome to various locations within the hemolysin plasmid pAD1. Together, the data indicate that the Tetr element, termed transposon Tn925, is very similar to the conjugative transposon Tn916 in both structure and function. A derivative of Tn925, containing transposon Tn917 inserted into a site approximately 3 kb from one end, exhibited elevated transfer frequencies and may provide a useful means for delivering Tn917 by conjugation into various gram-positive species.  相似文献   

16.
Conjugation was used to construct nisin-producing Lactococcus lactis subsp. cremoris strains. Recipients were obtained by electroporation of L. lactis subsp. cremoris strains with the drug resistance plasmid pGK13 or pGB301. A method, direct-plate conjugation, was developed in which donor and recipient cells were concentrated and then combined directly on selective media. This method facilitated transfer of the nisin-sucrose (Nip+ Suc+) phenotype from the donor strain, L. lactis subsp. lactis 11454, to three L. lactis subsp. cremoris recipient strains. Nip+ Suc+ L. lactis subsp. cremoris transconjugants were obtained at frequencies which ranged from 10(-7) to 10(-8) per donor CFU. DNA-DNA hybridization to transconjugant DNAs, performed with an oligonucleotide probe synthesized to detect the nisin precursor gene, showed that this gene was transferred during conjugation but was not associated with detectable plasmid DNA. Further investigation indicated that L. lactis subsp. cremoris Nip+ Suc+ transconjugants retained the recipient strain phenotype with respect to bacteriophage resistance and acid production in milk. Results suggested that it would be feasible to construct nisin-producing L. lactis subsp. cremoris strains for application as mixed and multiple starter systems. Additionally, the direct-plate conjugation method required less time than filter or milk agar matings and may also be useful for investigations of conjugal mechanisms in these organisms.  相似文献   

17.
As part of an effort to develop systems for genetic analysis of strains of Bacillus pumilus which are being used as a microbial hay preservative, we introduced the conjugative Enterococcus faecalis transposon Tn916 into B. pumilus ATCC 1 and two naturally occurring hay isolates of B. pumilus. B. pumilus transconjugants resistant to tetracycline were detected at a frequency of approximately 6.5 x 10(-7) per recipient after filter mating with E. faecalis CG110. Southern hybridization confirmed the insertion of Tn916 into several different sites in the B. pumilus chromosome. Transfer of Tn916 also was observed between strains of B. pumilus in filter matings, and one donor strain transferred tetracycline resistance to recipients in broth matings at high frequency (up to 3.4 x 10(-5) per recipient). Transfer from this donor strain in broth matings was DNase-resistant and was not mediated by culture filtrates. Transconjugants from these broth matings contained derivatives of a cryptic plasmid (pMGD302, approx 60 kb) from the donor strain with Tn916 inserted at various sites. The plasmids containing Tn916 insertions transferred to a B. pumilus recipient strain at frequencies of approx 5 x 10(-6) per recipient. This evidence suggests that pMGD302 can transfer by a process resembling conjugation between strains of B. pumilus.  相似文献   

18.
Kinetics of nisin production have been investigated in terms of endogenous features of the producer organism, Lactococcus lactis. Nisin-producing transposons (Tn Nip) were transferred to different hosts by conjugation. Constructs were cultivated in batch cultures and nisin produced was measured. The proteinase function of C2Prt (Tn Nip)-1 was eliminated by plasmid curing, resulting in the construct C2Prt - (Tn Nip)-1. C2Prt - (Tn Nip)-1 produced nisin to a higher concentration compared to C2Prt (Tn Nip)-1 and was able to maintain the maximum concentration till the end of cultivation. The final concentration of nisin produced was host-specific, because when different constructs carrying the same Tn Nip were cultivated they produced nisin to different concentrations. However, when the same host carried Tn Nip transposons derived from different donors the concentration of nisin produced was similar, suggesting that the two Tn Nip transposons may be similar.  相似文献   

19.
F V Schwarz  V Perreten  M Teuber 《Plasmid》2001,46(3):170-187
The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.  相似文献   

20.
A novel, chromosomally located conjugative transposon in Lactococcus lactis, Tn5276, was identified and characterized. It encodes the production of and immunity to nisin, a lanthionine-containing peptide with antimicrobial activity, and the capacity to utilize sucrose via a phosphotransferase system. Conjugal transfer of Tn5276 was demonstrated from L. lactis NIZO R5 to different L. lactis strains and a recombination-deficient mutant. The integration of Tn5276 into the plasmid-free strain MG1614 was analyzed by using probes based on the gene for the nisin precursor (nisA) and the gene for sucrose-6-phosphate hydrolase (sacA). The transposon inserted at various locations in the MG1614 chromosome and showed a preference for orientation-specific insertion into a single target site (designated site 1). By using restriction mapping in combination with field inversion gel electrophoresis and DNA cloning of various parts of the element including its left and right ends, a physical map of the 70-kb Tn5276 was constructed, and the nisA and sacA genes were located. The nucleotide sequences of Tn5276 junctions in donor strain NIZO R5 and in site 1 of an MG1614-derived transconjugant were determined and compared with that of site 1 in recipient strain MG1614. The results show that the A + T-rich ends of Tn5276 are flanked by a direct hexanucleotide repeat in both the donor and the transconjugant but that the element does not contain a clear inverted repeat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号