首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
Exercise causes heat shock (muscle temperatures of up to 45 degrees C, core temperatures of up to 44 degrees C) and oxidative stress (generation of O2- and H2O2), and exercise training promotes mitochondrial biogenesis (2-3-fold increases in muscle mitochondria). The concentrations of at least 15 possible heat shock or oxidative stress proteins (including one with a molecular weight of 70 kDa) were increased, in skeletal muscle, heart, and liver, by exercise. Soleus, plantaris, and extensor digitorum longus (EDL) muscles exhibited differential protein synthetic responses ([3H]leucine incorporation) to heat shock and oxidative stress in vitro but five proteins (particularly a 70 kDa protein and a 106 kDa protein) were common to both stresses. HSP70 mRNA levels were next analyzed by Northern transfer, using a [32P]-labeled HSP70 cDNA probe. HSP70 mRNA levels were increased, in skeletal and cardiac muscle, by exercise and by both heat shock and oxidative stress. Skeletal muscle HSP70 mRNA levels peaked 30-60 min following exercise, and appeared to decline slowly towards control levels by 6 h postexercise. Two distinct HSP70 mRNA species were observed in cardiac muscle; a 2.3 kb mRNA which returned to control levels within 2-3 h postexercise, and a 3.5 kb mRNA species which remained at elevated concentrations for some 6 h postexercise. The induction of HSP70 appears to be a physiological response to the heat shock and oxidative stress of exercise. Exercise hyperthermia may actually cause oxidative stress since we also found that muscle mitochondria undergo progressive uncoupling and increased O2- generation with increasing temperatures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
Protein phosphatase 2C (PP2C), an Mg(2+)-dependent enzyme that dephosphorylates serine and threonine residues, defines one of the three major families of structurally unrelated eukaryotic protein phosphatases. Members of the two other families of protein phosphatases are known to have important cellular roles, but very little is known about the biological functions of PP2C. In this report we describe a genetic investigation of a PP2C enzyme in the fission yeast Schizosaccharomyces pombe. We discovered ptc1+ (phosphatase two C) as a multicopy suppressor gene of swo1-26, a temperature-sensitive mutation of a gene encoding the heat shock protein hsp90. The ptc1+ gene product is a 40-kDa protein with approximately 24% identity to a rat PP2C protein. Purified Ptc1 has Mg(2+)-dependent casein phosphatase activity, confirming that it is a PP2C enzyme. A ptc1 deletion mutant is viable and has approximately normal levels of PP2C activity, observations consistent with the fact that ptc1+ is a member of a multigene family. Although a ptc1 deletion mutant is viable, it has a greatly reduced ability to survive brief exposure to elevated temperature. Moreover, ptc1+ mRNA levels increase 5- to 10-fold during heat shock. These data, demonstrating that Ptc1 activity is important for survival of heat shock, provide one of the first genetic clues as to the biological functions of PP2C.  相似文献   

4.
5.

Background

Under stress, AMP-activated protein kinase (AMPK) plays a central role in energy balance, and the heat shock response is a protective mechanism for cell survival. The relationship between AMPK activity and heat shock protein (HSP) expression under stress is unclear.

Methodology/Principal Findings

We found that heat stress induced dephosphorylation of AMPKα subunit (AMPKα) in various cell types from human and rodent. In HepG2 cells, the dephosphorylation of AMPKα under heat stress in turn caused dephosphorylation of acetyl-CoA carboxylase and upregulation of phosphoenolpyruvate carboxykinase, two downstream targets of AMPK, confirming the inhibition of AMPK activity by heat stress. Treatment of HepG2 cells with phosphatase 2A (PP2A) inhibitor okadaic acid or inhibition of PP2A expression by RNA interference efficiently reversed heat stress-induced AMPKα dephosphorylation, suggesting that heat stress inhibited AMPK through activation of PP2A. Heat stress- and other HSP inducer (CdCl2, celastrol, MG132)-induced HSP70 expression could be inhibited by AICAR, an AMPK specific activator. Inhibition of AMPKα expression by RNA interference reversed the inhibitory effect of AICAR on HSP70 expression under heat stress. These results indicate that AMPK inhibition under stress contribute to HSP70 expression. Mechanistic studies showed that activation of AMPK by AICAR had no effect on heat stress-induced HSF1 nuclear translocation, phosphorylation and binding with heat response element in the promoter region of HSP70 gene, but significantly decreased HSP70 mRNA stability.

Conclusions/Significance

These results demonstrate that during heat shock response, PP2A mediated AMPK inhibition upregulates HSP70 expression at least partially through stabilizing its mRNA, which suggests a novel mechanism for HSP induction under stress.  相似文献   

6.
Despite the importance of the stress-activated protein kinase pathways in cell death and survival, it is unclear how stressful stimuli lead to their activation. In the case of heat shock, the existence of a specific mechanism of activation has been evidenced, but the molecular nature of this pathway is undefined. Here, we found that Ask1 (apoptosis signal-regulating kinase 1), an upstream activator of the stress-activated protein kinase p38 during exposure to oxidative stress and other stressful stimuli, was also activated by heat shock. Ask1 activity was required for p38 activation since overexpression of a kinase dead mutant of Ask1, Ask1(K709M), inhibited heat shock-induced p38 activation. The activation of Ask1 by oxidative stress involves the oxidation of thioredoxin, an endogenous inhibitor of Ask1. A different activation mechanism takes place during heat shock. In contrast to p38 induction by H(2)O(2), induction by heat shock was not antagonized by pretreatment with the antioxidant N-acetyl-l-cysteine or by overexpressing thioredoxin and was not accompanied by the dissociation of thioredoxin from Ask1. Instead, heat shock caused the dissociation of glutathione S-transferase Mu1-1 (GSTM1-1) from Ask1 and overexpression of GSTM1-1-inhibited induction of p38 by heat shock. We concluded that because of an alternative regulation by the two distinct repressors thioredoxin and GSTM1-1, Ask1 constitutes the converging point of the heat shock and oxidative stress-sensing pathways that lead to p38 activation.  相似文献   

7.
We have characterized an open reading frame of 2,454 bp on chromosome I of Schizosaccharomyces pombe as the gene encoding trehalose-6P phosphatase (tpp1(+)). Disruption of tpp1(+) caused in vivo accumulation of trehalose-6P upon heat shock and prevented cell growth at 37 to 40 degrees C. Accumulation of trehalose-6P in cells bearing a chromosomal disruption of the tpp1(+) gene and containing a plasmid with tpp1(+) under the control of the thiamine-repressible promotor correlated with tpp1(+) repression. The level of tpp1(+) mRNA rose upon heat shock, osmostress, or oxidative stress and was negatively controlled by cyclic AMP-dependent protein kinase activity. Expression of tpp1(+) during oxidative or osmotic stress, but not during heat shock, was under positive control by the wis1-sty1 (equivalent to phh1 and spc1) mitogen-activated protein kinase pathway. Analysis of Tpp1 protein levels suggests that the synthesis of trehalose-6P phosphatase may also be subjected to translational or posttranslational control.  相似文献   

8.
9.
The role of oxidative stress in the induction of heat-shock proteins (HSPs) was studied in Drosophila Kc cells by comparing the effects of two different inducers, temperature stress and reoxygenation following a period of anoxia, on cellular respiration, thiol status, and the accumulation of HSPs. A heat shock from 25 to 37 degrees C caused a 60% increase in the rate of O2 uptake but caused little oxidative stress as indicated by a constant level of reduced glutathione, a slight increase in oxidized glutathione, and no change in protein sulfhydryls. Heat shock resulted in a pronounced accumulation of HSPs which was not inhibited by anoxic conditions. A different HSP inducer, reoxygenation following anoxia, resulted in an overall inhibition of respiration, the appearance of CN -insensitive O2 uptake, a 50% decrease in the level of reduced glutathione and a fourfold increase in the ratio of oxidized to reduced glutathione. Despite these indicators of oxidative stress, HSP synthesis was less pronounced than observed during heat shock and was not affected by antioxidants. Oxidative stress may induce HSP synthesis in some cases but is not responsible for HSP synthesis during a heat shock.  相似文献   

10.
11.
12.
Abstract The supercooling points of cold (-10C and -5C) and heat (37 C, 40 C and 45 C) shocked overwintering larvae were nearly the same as that of un-shocked ones (ca. -20C). Temperature shocks enhanced the ability to endure subzero temperature (- 15C, 3 h), and the cold shock treatment had more significant effect on maintaining larval survival than that of heat shock. It is the third insect that heat shock and cold shock enhanced its survival rate under low temperature simultaneously. A special stress protein (MW = 83 kD) was expressed under cold shock at -10 C and heat shock at 40 C or 45 C. It is also a few instances that a stress protein was expressed in the same insect under both heat shock and cold shock simultaneously. Meanwhile, the antioxidant system under different treatments was studied. Rapid cold hardening process had no oxidative stress because of the increase content of reduced glutathione and activity of glutathione reductase, but other treatments had.  相似文献   

13.
PP2C是一类丝氨酸/苏氨酸残基蛋白磷酸酶,在高等植物ABA信号途径中起着重要的作用。为阐明巴西橡胶树中PP2C基因的结构与功能,本研究通过生物信息学方法,从橡胶树转录组数据库中鉴定并获得6个PP2C家族基因,均含有PP2CD、F1和F2亚族。通过qRT-PCR技术对6个PP2C家族基因进行了干旱处理下的差异表达分析,发现6个基因都不同程度上响应橡胶树干旱胁迫。本研究为探究PP2C基因在橡胶树抗干旱反应机制提供了理论依据。  相似文献   

14.
Rapeseed (Brassica napus L.), which is the third leading source of vegetable oil, is sensitive to drought stress during the early vegetative growth stage. To investigate the initial response of rapeseed to drought stress, changes in the protein expression profiles of drought-sensitive (RGS-003) and drought-tolerant lines (SLM-003), and their F1 hybrid, were analyzed using a proteomics approach. Seven-day-old rapeseed seedlings were treated with drought stress by restricting water for 7 days, and proteins were extracted from roots and separated by two-dimensional polyacrylamide gel electrophoresis. In the sensitive rapeseed line, 35 protein spots were differentially expressed under drought stress, and proteins related to metabolism, energy, disease/defense, and transport were decreased. In the tolerant line, 32 protein spots were differentially expressed under drought stress, and proteins involved in metabolism, disease/defense, and transport were increased, while energy-related proteins were decreased. Six protein spots in F1 hybrid were common among expressed proteins in the drought-sensitive and -tolerant lines. Notably, tubulin beta-2 and heat shock protein 70 were decreased in the drought-sensitive line and hybrid F1 plants, while jasmonate-inducible protein and 20S proteasome subunit PAF1 were increased in the F1 hybrids and drought-tolerant line. These results indicate that (1) V-type H+ ATPase, plasma-membrane associated cation-binding protein, HSP 90, and elongation factor EF-2 have a role in the drought tolerance of rapeseed; (2) The decreased levels of heat shock protein 70 and tubulin beta-2 in the drought-sensitive and hybrid F1 lines might explain the reduced growth of these lines in drought conditions.  相似文献   

15.
Fission yeast Spc1/StyI MAPK is activated by many environmental insults including high osmolarity, oxidative stress, and heat shock. Spc1/StyI is activated by Wis1, a MAPK kinase (MEK), which is itself activated by Wik1/Wak1/Wis4, a MEK kinase (MEKK). Spc1/StyI is inactivated by the tyrosine phosphatases Pyp1 and Pyp2. Inhibition of Pyp1 was recently reported to play a crucial role in the oxidative stress and heat shock responses. These conclusions were based on three findings: 1) osmotic, oxidative, and heat stresses activate Spc1/StyI in wis4 cells; 2) oxidative stress and heat shock activate Spc1/StyI in cells that express Wis1AA, in which MEKK consensus phosphorylation sites were replaced with alanine; and 3) Spc1/StyI is maximally activated in Δpyp1 cells. Contrary to these findings, we report: 1) Spc1/StyI activation by osmotic stress is greatly reduced in wis4 cells; 2) wis1-AA and Δwis1 cells have identical phenotypes; and 3) all forms of stress activate Spc1/StyI in Δpyp1 cells. We also report that heat shock, but not osmotic or oxidative stress, activate Spc1 in wis1-DD cells, which express Wis1 protein that has the MEKK consensus phosphorylation sites replaced with aspartic acid. Thus osmotic and oxidative stress activate Spc1/StyI by a MEKK-dependent process, whereas heat shock activates Spc1/StyI by a novel mechanism that does not require MEKK activation or Pyp1 inhibition.  相似文献   

16.
Small heat shock proteins are involved in stress tolerance. We previously isolated and characterized a rice cDNA clone, Oshsp26, encoding a chloroplast-localized small heat shock protein that is expressed following oxidative or heat stress. In this study, we transferred this gene to tall fescue plants by an Agrobacterium-mediated transformation system. The integration and expression of the transgene was confirmed by PCR, Southern, northern, and immunoblot analyzes. Compared to the control plants, the transgenic plants had significantly lower electrolyte leakage and accumulation of thiobarbituric acid-reactive substances when exposed to heat or methyl viologen. The photochemical efficiency of photosystem II (PSII) (Fv/Fm) in the transgenic tall fescue plants was higher than that in the control plants during heat stress (42°C). These results suggest that the OsHSP26 protein plays an important role in the protection of PSII during heat and oxidative stress in vivo.  相似文献   

17.
水分胁迫是影响植物生长发育的主要生长因子。通过蛋白质组学技术可对水分胁迫下植物差异变化的蛋白和基因进行挖掘,在研究植物抗旱生理机制方面意义重大。总结了植物蛋白质组学的基本方法与关键技术,同时从光合与碳代谢相关蛋白、抗氧化系统、渗透调节蛋白、热激蛋白、胚胎发育晚期丰富蛋白、转录因子等方面综述了近几年国际上在植物水分胁迫蛋白质组研究方面的进展,并展望了今后蛋白质组学技术发展的方向。  相似文献   

18.
19.
Changes of endogenous polyamine (PA) levels could be a key adaptive response to drought in plants. White clover pretreated with or without dicyclohexylamine (DCHA), an inhibitor of PA biosynthesis, was subjected to drought stress induced by 18% polyethylene glycol 6000 for 8 days in controlled growth chambers. Results showed that drought stress significantly increased endogenous PA content, whereas DCHA significantly decreased PA accumulation under drought stress. The attenuate PA biosynthesis was unfavorable for plant growth and drought tolerance, as reflected by significantly lower relative water content, relative growth rate, instantaneous water use efficiency, and cell membrane stability in leaves in response to drought. On the basis of proteomic analysis, the inhibition of PA synthesis decreased the accumulation of many key differentially expressed proteins including (1) ribosomal structure and biogenesis: elongation factor, ribosomal protein S10E, and 30S ribosomal protein; (2) amino acid transport and metabolism: cysteine synthase, delta-1-pyrroline-5-carboxylate synthetase, and glutamate decarboxylase; (3) carbohydrate metabolism and energy production: photosystem apoprotein, sucrose-phosphate synthase, phosphogluconate dehydrogenase, sucrose-phosphatase, NADH oxidoreductase, and ATP synthase; (4) antioxidant metabolism: catalase, peroxidase I, ascorbate peroxidase, and glutathione S-transferase; and (5) other biological processes: heat shock protein 70, heat shock protein 90, and calcium-dependent protein kinase associated with the decreased drought tolerance in white clover. These findings indicate that PAs play a critical role in the regulation of growth, ribosome, amino acid and energy metabolism, and antioxidant reactions in white clover under drought stress. Drought-induced increases in endogenous PAs could be one of key adaptive responses against drought stress in white clover.  相似文献   

20.
In nature, plants are subject to changes of tempera-ture. Thus, like other organisms, plants have evolved strategies for preventing damage caused by rapid changes in temperature and for repairing what damage is unavoidable. Heat stress responses have been well documented in a wide range of organisms. In all spe-cies studied, the heat shock (HS) response is charac-terized by a rapid production and a transient accumu-lation of specific families of proteins known as heat shock proteins (Hsps) th…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号