首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nicotinic acetylcholine receptor regulates the ion permeability of the postsynaptic membrane. This report presents evidence that the transmitter binding site and the ion channel may be located on distinct subunits. By hybridisation of receptor complexes, in which the transmitter binding site was blocked with complexes in which the ion channel was irreversibly inhibited, we reconstituted active acetylcholine receptor complexes. The reconstituted system was similar to the native receptor in its ability to regulate the ion permeability of lipid vesicles in response to nicotinic cholinergic effectors.  相似文献   

2.
The molecular mechanism underlying channel opening in response to agonist binding remains a challenging issue in neuroscience. In this regard, many efforts have been recently undertaken in ATP-gated P2X receptors. Among those efforts, we have provided evidence in the P2X2 receptor that tightening of ATP sites upon agonist binding induces opening of the ion channel. Here we extend our analysis to show that the sulfhydryl-reactive ATP analog 8-thiocyano-ATP (NCS-ATP), a potent P2X2 agonist, when covalently labeled in the ATP-binding site at position Leu186 likely favors the tightening mechanism, but not the channel opening mechanism. Our data predict the existence of intermediate or preactivation state(s) trapped by NCS-ATP, in which tightening of the binding site is favored while the channel is still closed. We propose that this (these) intermediate ATP-bound state(s) prime(s) channel gating in the P2X2 receptor.  相似文献   

3.
The molecular mechanism underlying channel opening in response to agonist binding remains a challenging issue in neuroscience. In this regard, many efforts have been recently undertaken in ATP-gated P2X receptors. Among those efforts, we have provided evidence in the P2X2 receptor that tightening of ATP sites upon agonist binding induces opening of the ion channel. Here we extend our analysis to show that the sulfhydryl-reactive ATP analog 8-thiocyano-ATP (NCS-ATP), a potent P2X2 agonist, when covalently labeled in the ATP-binding site at position Leu186 likely favors the tightening mechanism, but not the channel opening mechanism. Our data predict the existence of intermediate or preactivation state(s) trapped by NCS-ATP, in which tightening of the binding site is favored while the channel is still closed. We propose that this (these) intermediate ATP-bound state(s) prime(s) channel gating in the P2X2 receptor.  相似文献   

4.
5.
The receptor for the bee venom derived neurotoxin, apamin, is widely believed to be an integral component of the small conductance calcium-activated potassium channel in many excitable cells. By affinity chromatography on immobilized apamin, a 78 kD apamin binding protein of the bovine brain synaptosomes was isolated. Antibodies were elicited against this protein and used to clone a cDNA from a porcine vascular smooth muscle expression library. This gene (Kcal 1.8) codes for a 438 amino protein with four potential transmembrane domains, one putative calcium binding site, a protein kinase C phosphorylation site, and a leucine zipper motif. Kcal 1.8 encoded protein has no significant sequence homologies with any known ion channels or receptors. Kcal 1.8 is likely to encode a protein associated with the small conductance calcium-activated potassium channel in vascular smooth muscle.  相似文献   

6.
Recent work has indicated that sigma receptor ligands can modulate potassium channels. However, the only sigma receptor characterized at the molecular level has a novel structure unlike any other receptor known to modulate ion channels. This 26-kDa protein has a hydropathy profile suggestive of a single membrane-spanning domain, with no apparent regions capable of G-protein activation or protein phosphorylation. In the present study patch clamp techniques and photoaffinity labeling were used in DMS-114 cells (a tumor cell line known to express sigma receptors) to investigate the role of the 26-kDa protein in ion channel modulation and probe the mechanism of signal transduction. The sigma receptor ligands N-allylnormetazocine (SKF10047), ditolylguanidine, and (+/-)-2-(N-phenylethyl-N-propyl)-amino-5-hydroxytetralin all inhibited voltage-activated potassium current (IK). Iodoazidococaine (IAC), a high affinity sigma receptor photoprobe, produced a similar inhibition in IK, and when cell homogenates were illuminated in the presence of IAC, a protein with a molecular mass of 26 kDa was covalently labeled. Photolabeling of this protein by IAC was inhibited by SKF10047 with half-maximal effect at 7 microM. SKF10047 also inhibited IK with a similar EC50 (14 microM). Thus, physiological responses to sigma receptor ligands are mediated by a protein with the same molecular weight as the cloned sigma receptor. This indicates that ion channel modulation is indeed mediated by this novel protein. Physiological responses were the same when cells were perfused internally with either guanosine 5'-O-(2-thiodiphosphate) or GTP, indicating that signal transduction is independent of G-proteins. These results demonstrate that ion channels can be modulated by a receptor that does not have seven membrane-spanning domains and does not employ G-proteins. Sigma receptors thus modulate ion channels by a novel transduction mechanism.  相似文献   

7.
神经活性甾体对神经元的作用   总被引:3,自引:0,他引:3  
神经活性甾体是指神经组织中具有活性的甾体激素,根据甾体激素的作用机制可分为三类:(1)通过细胞表面离子通道型受体介导产生效应,这些受体包括GABAA受体,NMDA受体等。(2)通过G蛋白偶联的膜受体指导第二信使反应,再通过DNA结合蛋白,调节基因表达产生效应,(3)通过细胞内受体介导调控基因的表达产生效应,甾体激素的这些效应尤其是对离子通道型受体和G蛋白偶联型受体的调节作用,已引起重视。  相似文献   

8.
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel protein whose transmembrane domain (TM-domain) is believed to be responsible for channel gating via a hydrophobic effect. In this work, we perform molecular dynamics and Brownian dynamics simulations to investigate the effect of transmembrane potential on the conformation and water occupancy of TM-domain, and the resulting ion permeation events. The results show that the behavior of the hydrophobic gate is voltage-dependent. Large hyperpolarized membrane potential can change the conformation of TM-domain and water occupancy in this region, which may enable ion conduction. An electrostatic gating mechanism is also proposed from our simulations, which seems to play a role in addition to the well-known hydrophobic effect.  相似文献   

9.
Ion channels are allosteric membrane proteins that open and close an ion-permeable pore in response to various stimuli. This gating process provides the regulation that underlies electrical signaling events such as action potentials, postsynaptic potentials, and sensory receptor potentials. Recently, the molecular structures of a number of ion channels and channel domains have been solved by x-ray crystallography. These structures have highlighted a gap in our understanding of the relationship between a channel's function and its structure. Here we introduce a new technique to fill this gap by simultaneously measuring the channel function with the inside-out patch-clamp technique and the channel structure with fluorescence spectroscopy. The structure and dynamics of short-range interactions in the channel can be measured by the presence of quenching of a covalently attached bimane fluorophore by a nearby tryptophan residue in the channel. This approach was applied to study the gating rearrangements in the bovine rod cyclic nucleotide-gated ion channel CNGA1 where it was found that C481 moves towards A461 during the opening allosteric transition induced by cyclic nucleotide. The approach offers new hope for elucidating the gating rearrangements in channels of known structure.  相似文献   

10.
It is demonstrated that two classes of binding site for acetylcholine are present on Torpedocalifornica acetylcholine receptor. One class is the well documented site on each of the two subunits of 40,000 daltons, which can be covalently modified by bromocetylcholine. Both in the absence and in the presence of bromoacetylcholine another binding site is shown to exist by virtue of acetylcholine dependent fluorescence changes in the receptor covalently modified by 4-[N-(iodoacetoxy)ethyl-N-methyl]-amino-7-Nitrobenz-2-oxa-1,3 diazole (IANBD). This site has a low affinity for acetylcholine (Kd ~ 80 μM) that corresponds closely with the known concentration dependence of acetylcholine mediated activation of this receptor and we conclude that it may represent a site of association that participates in channel opening in this system.  相似文献   

11.
We have investigated the interactions of a novel anionic ryanoid, 10-O-succinoylryanodol, with individual mammalian cardiac muscle ryanodine receptor channels under voltage clamp conditions. As is the case for all ryanoids so far examined, the interaction of 10-O-succinoylryanodol with an individual RyR channel produces profound alterations in both channel gating and rates of ion translocation. In the continued presence of the ryanoid the channel fluctuates between periods of normal and modified gating, indicating a reversible interaction of the ligand with its receptor. Unlike the majority of ryanoids, we observe a range of different fractional conductance states of RyR in the presence of 10-O-succinoylryanodol. We demonstrate that 10-O-succinoylryanodol is a very flexible molecule and propose that each fractional conductance state arises from the interaction of a different conformer of the ryanoid molecule with the RyR channel. The probability of channel modification by 10-O-succinoylryanodol is dependent on the transmembrane holding potential. Comparison of the voltage dependence of channel modification by this novel anionic ryanoid with previous data obtained with cationic and neutral ryanoids reveals that the major influence of transmembrane potential on the probability of RyR channel modification by ryanoids results from an alteration in receptor affinity. These investigations also demonstrate that the charge of the ryanoid has a major influence on the rate of association of the ligand with its receptor indicating that ionic interactions are likely to be involved in this reaction.  相似文献   

12.
Pannexins are a class of plasma membrane spanning proteins that presumably form a hexameric, non-selective ion channel. Although similar in secondary structure to the connexins, pannexins notably do not form endogenous gap junctions and act as bona fide ion channels. The pannexins have been primarily studied as ATP-release channels, but the overall diversity of their functions is still being elucidated. There is an intriguing theme with pannexins that has begun to develop. In this review we analyze several recent reports that converge on the idea that pannexin channels (namely Panx1) can potentiate ligand-gated receptor signaling. Although the literature remains sparse, this emerging concept appears consistent between both ionotropic and metabotropic receptors of several ligand families.  相似文献   

13.
Capsaicin ion channels are highly expressed in peripheral nervous terminals and involved in pain and thermal sensations. One characteristic of the cloned VR1 receptor is its multimodal responses to various types of noxious stimuli. The channel is independently activated by capsaicin and related vanilloids at submicromolar range, by heat above 40 degrees C, and by protons at pH below 6.5. Furthermore, simultaneous applications of two or more stimuli lead to cross sensitization of the receptor, with an apparent increase in the sensitivity to any individual stimulus when applied alone. We studied here the mechanism underlying such cross-sensitization; in particular, between capsaicin and pH, two prototypical stimuli for the channel. By analyzing single-channel currents recorded from excised-patches expressing single recombinant VR1 receptors, we examined the effect of pH on burst properties of capsaicin activation at low concentrations and the effect on gating kinetics at high concentrations. Our results indicate that pH has dual effects on both capsaicin binding and channel gating. Lowering pH enhances the apparent binding affinity of capsaicin, promotes the occurrences of long openings and short closures, and stabilizes at least one of the open conformations of the channel. Our data also demonstrate that capsaicin binding and protonation of the receptor interact allosterically, where the effect of one can be offset by the effect of the other. These results provide important basis to further understand the nature of the activation pathways of the channel evoked by different stimuli as well as the general mechanism underling the cross-sensitization of pain.  相似文献   

14.
Pannexins are a class of plasma membrane spanning proteins that presumably form a hexameric, non-selective ion channel. Although similar in secondary structure to the connexins, pannexins notably do not form endogenous gap junctions and act as bona fide ion channels. The pannexins have been primarily studied as ATP-release channels, but the overall diversity of their functions is still being elucidated. There is an intriguing theme with pannexins that has begun to develop. In this review we analyze several recent reports that converge on the idea that pannexin channels (namely Panx1) can potentiate ligand-gated receptor signaling. Although the literature remains sparse, this emerging concept appears consistent between both ionotropic and metabotropic receptors of several ligand families.  相似文献   

15.
Abstract: In the transmitter-gated ion channel class of receptors, the members of which are all believed to be heterooligomers, the number and arrangement of the subunits are only known with any certainty for the nicotinic acetylcholine receptor from Torpedo electric fish. That receptor has been shown to possess a pentameric rosette structure, with five homologous subunits (α2βγδ) arranged to enclose the central ion channel. The data were obtained by electron image analysis of two-dimensional receptor arrays, which form as a consequence of that receptor's exceptionally high abundance in the Torpedo membranes and are therefore not attainable for other receptors. We have applied another direct approach to determine the quaternary structure of native ionotropic GABA receptors. We have purified those receptors from porcine brain cortex and analysed the rotational symmetry of isolated receptors visualized by electron microscopy. The results show the receptor to have a pentameric structure with a central water-filled pore, which can now be said to be characteristic of the entire superfamily.  相似文献   

16.
To identify regions of the ryanodine receptor (RyR) important for ion conduction we modified the channel with sulfhydryl-reacting compounds. After addition of methanethiosulfonate (MTS) compounds channel conductance was decreased while other channel properties, including channel regulation by ATP, caffeine, or Ca, were unaffected. The site of action was accessible to the MTS compounds from the cytoplasmic, but not the luminal, side of the channel. In addition, the hydrophilic MTS compounds were only effective when the channel was open, suggesting that the compounds covalently modify the channel from within the water-filled ion conducting pathway. The decrease in channel current amplitude occurred in a step-wise fashion and was irreversible and cumulative over time, eventually leading to the complete block of channel current. However, the time required for each consecutive modification during continuous exposure to the MTS compounds increased, suggesting that successive modification by the MTS compounds is not independent. These results are consistent with the hypothesis that the channel forms a wide vestibule on the cytoplasmic side and contains a much smaller opening on the luminal side. Furthermore, our results indicate that the MTS compounds can serve as functional markers for specific residues of the RyR to be identified in molecular studies.  相似文献   

17.
We introduce the term ‘silent agonists’ to describe ligands that can place the α7 nicotinic acetylcholine receptor (nAChR) into a desensitized state with little or no apparent activation of the ion channel, forming a complex that can subsequently generate currents when treated with an allosteric modulator. KC-1 (5′-phenylanabaseine) was synthesized and identified as a new silent agonist for the α7 nAChR; it binds to the receptor but does not activate α7 nAChR channel opening when applied alone, and its agonism is revealed by co-application with the type II positive allosteric modulator PNU-120596 in the Xenopus oocyte system. The concise synthesis was accomplished in three steps with the C–C bonds formed via Pd-catalyzed mono-arylation and organolithium coupling with N-Boc piperidinone. Comparative structural analyses indicate that a positive charge, an H-bond acceptor, and an aryl ring in a proper arrangement are needed to constitute one class of silent agonist for the α7 nAChR. Because silent agonists may act on signaling pathways not involving ion channel opening, this class of α7 nAChR ligands may constitute a new alternative for the development of α7 nAChR therapeutics.  相似文献   

18.
This review addresses the synthesis and characterization of two different types of receptor-based liquid chromatographic supports, one based upon a trans-membrane ligand gated ion channel receptor (the nicotinic acetylcholine receptor) and the other a soluble nuclear receptor (the estrogen receptor). In addition, studies with the P-glycoprotein transporter are also reported. The nicotinic receptor was immobilized via hydrophobic insertion into the interstitial spaces of an immobilized artificial membrane (IAM) stationary phase. the estrogen receptor was tethered to a hydrophilic stationary phase and the membranes containing the Pgp transporter were coated on the surface of the IAM stationary phase. The stationary phases were characterized using known ligands and substrates for the respective non-immobilized proteins. The results from zonal and frontal chromatographic experiments demonstrated that the stationary phases could be used to determine binding affinities (expressed as dissociation constants, Kd,'s) and to resolve mixtures of ligands according to their relative affinities. In addition. competitive ligand binding studies on the P-glycoprotein-based stationary phase have established that this phase can be used to identify and characterize competitive displacement and allosteric interactions. These studies demonstrate that immobilized-receptor phases can be used for on-line pharmacological studies and as rapid screens for the isolation and identification of lead drug candidates from complex biological or chemical mixtures.  相似文献   

19.
The coupling mechanism of the gamma-aminobutyric acid (GABA)B receptor, one of the subtypes of GABA receptors, with calcium ion channel and GTP-binding protein was examined using a crude synaptic membrane (P2) fraction from the bovine cerebral cortex and a fraction solubilized with sodium deoxycholate. In the P2 fraction, [3H]GABA binding to the GABAB receptor was increased significantly by the addition of calcium ion, and this enhancement was accentuated further by calcium ion channel blockers such as nicardipine and diltiazem. In contrast, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, did not affect on the calcium ion-induced enhancement of GABAB receptor binding. These results suggest that the GABAB receptor may be functionally coupled with the calcium ion channel, which exhibits an inhibitory modulation against the receptor. On the other hand, GABAB receptor binding, which was noncompetitively inhibited by guanine nucleotides such as GTP, guanosine 5'-(3-O-thio)triphosphate (GTP gamma S), guanosine 5'-(beta, gamma-imido)triphosphate [Gpp(NH)p], and GDP, was competitively inhibited by (-)-baclofen. Although the affinity of (-)-baclofen for the GABAB receptor was decreased in the presence of GTP, pretreatment of the P2 fraction with islet-activating protein (IAP) eliminated the effect of GTP. In addition, GABA and (-)-baclofen induced an increase of GTPase activity in the P2 fraction, and this increase was also eliminated by treatment with IAP. These results suggest that the GABAB receptor may also be functionally coupled with IAP-sensitive GTP-binding protein. Treatment of the P2 fraction with sodium deoxycholate resulted in the highest solubilization of GABAB receptor among various detergents examined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号