首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
1. The activities of 2-oxoglutarate dehydrogenase (EC 1.2.4.2) were measured in hearts and mammary glands of rats, mice, rabbits, guinea pigs, cows, sheep, goats and in the flight muscles of several Hymenoptera. 2. The activity of 2-oxoglutarate dehydrogenase was similar to the maximum flux through the tricarboxylic acid cycle in vivo. Therefore measuring the activity of this enzyme may provide a simple method for estimating the maximum flux through the cycle for comparative investigations. 3. The activities of pyruvate dehydrogenase (EC 1.2.4.1) in mammalian hearts were similar to those of 2-oxoglutarate dehydrogenase, suggesting that in these tissues the tricarboxylic acid cycle can be supplied (under some conditions) by acetyl-CoA derived from pyruvate alone. 4. In the lactating mammary glands of the rat and mouse, the activities of pyruvate dehydrogenase exceeded those of 2-oxoglutarate dehydrogenase, reflecting a flux of pyruvate to acetyl-CoA for fatty acid synthesis in addition to that of oxidation via the tricarboxylic acid cycle. In ruminant mammary glands the activities of pyruvate dehydrogenase were similar to those of 2-oxoglutarate dehydrogenase, reflecting the absence of a significant flux of pyruvate to fatty acids in these tissues.  相似文献   

2.
13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells   总被引:6,自引:0,他引:6  
Anaplerotic flux into the Kreb's cycle is crucial for glucose-stimulated insulin secretion from pancreatic beta-cells. However, the regulation of flux through various anaplerotic pathways in response to combinations of physiologically relevant substrates and its impact on glucose-stimulated insulin secretion is unclear. Because different pathways of anaplerosis generate distinct products, they may differentially modulate the insulin secretory response. To examine this question, we applied 13C-isotopomer analysis to quantify flux through three anaplerotic pathways: 1) pyruvate carboxylase of pyruvate derived from glycolytic sources; 2) pyruvate carboxylase of pyruvate derived from nonglycolytic sources; and 3) glutamate dehydrogenase (GDH). At substimulatory glucose, anaplerotic flux rate in the clonal INS-1 832/13 cells was approximately 40% of Kreb's cycle flux, with similar contributions from each pathway. Increasing glucose to 15 mm stimulated insulin secretion approximately 4-fold, and was associated with a approximately 4-fold increase in anaplerotic flux that could mostly be attributed to an increase in PC flux. In contrast, the addition of glutamine to the perfusion media stimulated GDH flux approximately 6-fold at both glucose concentrations without affecting insulin secretion rates. In conclusion, these data support the hypothesis that a signal generated by anaplerosis from increased pyruvate carboxylase flux is essential for glucose-stimulated insulin secretion in beta-cells and that anaplerosis through GDH does not play a major role in this process.  相似文献   

3.
The regulation of flux through pyruvate dehydrogenase (PDH) and pyruvate carboxylase (PC) by fatty acids and glucagon was studied in situ, in intact hepatocyte suspensions. The rate of pyruvate metabolized by carboxylation plus decarboxylation was determined from the incorporation of [1-14C]pyruvate into 14CO2 plus [14C]glucose. The flux through PDH was determined from the rate of formation of 14CO2 from [1-14C]pyruvate corrected for other decarboxylation reactions (citrate cycle, phosphoenolpyruvate carboxykinase and malic enzyme), and the flux through PC was determined by subtracting the flux through PDH from the total pyruvate metabolized. With 0.5 mM pyruvate as substrate the ratio of flux through PDH/PC was 1.9 in hepatocytes from fed rats and 1.4 in hepatocytes from 24 h-starved rats. In hepatocytes from fed rats, octanoate (0.8 mM) and palmitate (0.5 mM) increased the flux through PDH (59-76%) and PC (80-83%) without altering the PDH/PC flux ratios. Glucagon did not affect the flux through PDH but it increased the flux through PC twofold, thereby decreasing the PDH/PC flux ratio to the value of hepatocytes from starved rats. In hepatocytes from starved rats, fatty acids had similar effects on pyruvate metabolism as in hepatocytes from fed rats, however glucagon did not increase the flux through PC. 2[5(4-Chlorophenyl)pentyl]oxirane-2-carboxylate (100 microM) an inhibitor of carnitine palmitoyl transferase I, reversed the palmitate-stimulated but not the octanoate-stimulated flux through PDH, in cells from fed rats, indicating that the effects of fatty acids on PDH are secondary to the beta-oxidation of fatty acids. This inhibitor also reversed the stimulatory effect of palmitate on PC and partially inhibited the flux through PC in the presence of octanoate suggesting an effect of POCA independent of fatty acid oxidation. It is concluded that the effects of fatty acids on pyruvate metabolism are probably secondary to increased pyruvate uptake by mitochondria in exchange for acetoacetate. Glucagon favours the partitioning of pyruvate towards carboxylation, by increasing the flux through pyruvate carboxylase, without directly inhibiting the flux through PDH.  相似文献   

4.
The photosynthetic green sulfur bacterium Chlorobaculum tepidum assimilates CO(2) and organic carbon sources (acetate or pyruvate) during mixotrophic growth conditions through a unique carbon and energy metabolism. Using a (13)C-labeling approach, this study examined biosynthetic pathways and flux distributions in the central metabolism of C. tepidum. The isotopomer patterns of proteinogenic amino acids revealed an alternate pathway for isoleucine synthesis (via citramalate synthase, CimA, CT0612). A (13)C-assisted flux analysis indicated that carbons in biomass were mostly derived from CO(2) fixation via three key routes: the reductive tricarboxylic acid (RTCA) cycle, the pyruvate synthesis pathway via pyruvate:ferredoxin oxidoreductase, and the CO(2)-anaplerotic pathway via phosphoenolpyruvate carboxylase. During mixotrophic growth with acetate or pyruvate as carbon sources, acetyl-CoA was mainly produced from acetate (via acetyl-CoA synthetase) or citrate (via ATP citrate lyase). Pyruvate:ferredoxin oxidoreductase converted acetyl-CoA and CO(2) to pyruvate, and this growth-rate control reaction is driven by reduced ferredoxin generated during phototrophic growth. Most reactions in the RTCA cycle were reversible. The relative fluxes through the RTCA cycle were 80~100 units for mixotrophic cultures grown on acetate and 200~230 units for cultures grown on pyruvate. Under the same light conditions, the flux results suggested a trade-off between energy-demanding CO(2) fixation and biomass growth rate; C. tepidum fixed more CO(2) and had a higher biomass yield (Y(X/S), mole carbon in biomass/mole substrate) in pyruvate culture (Y(X/S) = 9.2) than in acetate culture (Y(X/S) = 6.4), but the biomass growth rate was slower in pyruvate culture than in acetate culture.  相似文献   

5.
Isolated hepatocytes from 24-h-starved rats were used to assess the possible effect of Ahe hypoglycaemic agent 3-mercaptopicolinate on flux through the hepatic pyruvate dehydrogenase complex. Increasing the extraceIIular pyruvate concentration from 1 mM to 2 mM or 5 mM resulted in an increase in flux through pyruvate dehydrogenase and the tricarboxylic acid cycle as measured by14CO2 evolution from [1-14C]pyruvate and [3-14C]pyruvate. Gluconeogenesis was inhibited by 3-mercaptopicolinate from both 1 mM and 2 mM pyruvate, but significant increases in malate and citrate concentrations only occurred in cells incubated with 1 mM pyruvate. Flux through pyruvate dehydrogenase was stimulated by 3-mercaptopicolinate with 1 mM pyruvate but was unaltered with 2 mM pyruvate. Dichloroacetate stimulated flux through pyruvate dehydrogenase with no effect on gluconeogenesis in the presence of I mM pyruvate. There was no effect of 3-mercaptopicolinate, administered in vivo, to 24-h-starved rats on the activity of pyruvate dehydrogenase in freeze-clamped heart or liver tissue, although the drug did decrease blood glucose concentration and increase the blood concentrations of lactate and alanine. Dichloroacetate, administered in vivo to 24-h-starved rats, increased the activity of pyruvate dehydrogenase in freeze-clamped heart and liver, and caused decreases in the blood concentrations of glucose, lactate , and alanine. The results suggest that 3-mercaptopicolinate increases flux through hepatocyte pyruvate dehydrogenase by an indirect mechanism.  相似文献   

6.
—Previously published equations for analysis of [14C]glucose metabolism assumed that products of glycolysis enter the citric acid cycle only through acetyl-CoA (Larrabee , 1978). These equations are now extended to include entrance into the citric acid cycle through the pyruvate carboxy-lase reaction as well as via acetyl-CoA and are applied to previously reported data from dorsal root ganglia of 15-day-old chicken embryos. The rate of output of labelled CO2 in the presence of [2-14C] glucose could not be accounted for if the flux rate into the citric acid cycle through the pyruvate carboxylase reaction was assumed to be more than about 10–15% of that through acetyl-CoA. It is concluded (1) that the pyruvate carboxylase reaction is a relatively minor source of material for the citric acid cycle in these ganglia and (2) that the previous conclusions about [14C]glucose metabolism, which ignored the pyruvate carboxylase reaction, need not be modified in the light of this reanalysis.  相似文献   

7.
The technique of metabolic flux analysis was implemented to elucidate the flux balancing of Saccharomyces cerevisiae cultivated in a multistage continuous stirred tank reactor fermentation environment. The results showed that the majority of the substrate (97.70 +/- 0.49%) was funneled into the glycolytic pathway, while the remainder was subdivided between the pentose phosphate pathway and pathways for polysaccharide synthesis. At the pyruvate node, 87.30 +/- 1.38% of the flux was channeled through the reaction governed by pyruvate decarboxylase. Fluxes through the pyruvate dehydrogenase bypass were maintained at a constant level (82.65 +/- 1.47%) irrespective of the configuration of the fermentation setup. Activity through the TCA "cycle" was replenished by the reaction catalyzed by pyruvate carboxylase and by the transport of cytosolic oxaloacetate across the mitochondrial membrane. The CO(2) evolution rate varied as fermentation progressed; however, the yield coefficient of CO(2) remained at a constant value. Although a constant yield of ethanol (0.42 g of ethanol/g of glucose) was obtained, operations of the TCA cycle were gradually switched from partially reductive to partially oxidative pathways from the first fermenter to the fourth fermenter.  相似文献   

8.
The goal of this study was to measure flux through pyruvate carboxylation and decarboxylation in the heart in vivo. These rates were measured in the anterior wall of normal anesthetized swine hearts by infusing [U-(13)C(3)]lactate and/or [U-(13)C(3)] pyruvate into the left anterior descending (LAD) coronary artery. After 1 h, the tissue was freeze-clamped and analyzed by gas chromatography-mass spectrometry for the mass isotopomer distribution of citrate and its oxaloacetate moiety. LAD blood pyruvate and lactate enrichments and concentrations were constant after 15 min of infusion. Under near-normal physiological concentrations of lactate and pyruvate, pyruvate carboxylation and decarboxylation accounted for 4.7 +/- 0.3 and 41.5 +/- 2.0% of citrate formation, respectively. Similar relative fluxes were found when arterial pyruvate was raised from 0.2 to 1.1 mM. Addition of 1 mM octanoate to 1 mM pyruvate inhibited pyruvate decarboxylation by 93% without affecting carboxylation. The absence of M1 and M2 pyruvate demonstrated net irreversible pyruvate carboxylation. Under our experimental conditions we found that pyruvate carboxylation in the in vivo heart accounts for at least 3-6% of the citric acid cycle flux despite considerable variation in the flux through pyruvate decarboxylation.  相似文献   

9.
The effect of the mitochondrial pyruvate transport inhibitors, α-cyanocinnamate and α-cyano-4-hydroxycinnamate, on the regulation of the pyruvate dehydrogenase multienzyme complex was investigated in the isolated perfused rat heart. Metabolic flux through pyruvate dehydrogenase was monitored by measuring 14CO2 production from [1-14C]pyruvate infused into the heart. A stepwise increase in the concentration of the inhibitor in the influent perfusate effected a stepwise reduction of the flux through the enzyme complex at all pyruvate concentrations tested. However, the magnitude of the α-cyanocinnamate-insensitive flux through pyruvate dehydrogenase increased markedly as the infused pyruvate concentration was elevated. The inhibition of pyruvate decarboxylation in the heart was nearly completely reversed following cessation of the inhibitor infusion. α-Cyanocinnamate was nearly 10 times more potent than α-cyano-4-hydroxycinnamate as an inhibitor of the flux through pyruvate dehydrogenase. Maximally inhibiting levels of α-cyano-4-hydroxycinnamate caused an increase in the ratio of the active form of pyruvate dehydrogenase to the total extractable enzyme complex from a value of 0.5 at 1 mm infused pyruvate (in the absence of the inhibitor) to a value of near unity. This result indicated that the intramitochondrial pyruvate concentration was severely depleted by the infusion of the inhibitor and that the enzyme complex was interconverted to its active form under these conditions. Removal of the inhibitor from the perfusion medium again lowered the ratio of the active/total pyruvate dehydrogenase to near its original level of 0.5 and restored the original flux through the enzyme complex indicating that mitochondrial pyruvate transport has been restored. The results of this study indicate that α-cyanocinnamate and its derivatives are effective inhibitors of pyruvate transport in the perfused heart and that carrier-mediated pyruvate transport can be an important parameter in the regulation of the activation state and the metabolic flux through the pyruvate dehydrogenase multienzyme complex in the heart.  相似文献   

10.
The anoxygenic green sulfur bacteria (GSBs) assimilate CO2 autotrophically through the reductive (reverse) tricarboxylic acid (RTCA) cycle. Some organic carbon sources, such as acetate and pyruvate, can be assimilated during the phototrophic growth of the GSBs, in the presence of CO2 or HCO3. It has not been established why the inorganic carbonis required for incorporating organic carbon for growth and how the organic carbons are assimilated. In this report, we probed carbon flux during autotrophic and mixotrophic growth of the GSB Chlorobaculum tepidum. Our data indicate the following: (a) the RTCA cycle is active during autotrophic and mixotrophic growth; (b) the flux from pyruvate to acetyl-CoA is very low and acetyl-CoA is synthesized through the RTCA cycle and acetate assimilation; (c) pyruvate is largely assimilated through the RTCA cycle; and (d) acetate can be assimilated via both of the RTCA as well as the oxidative (forward) TCA (OTCA) cycle. The OTCA cycle revealed herein may explain better cell growth during mixotrophic growth with acetate, as energy is generated through the OTCA cycle. Furthermore, the genes specific for the OTCA cycle are either absent or down-regulated during phototrophic growth, implying that the OTCA cycle is not complete, and CO2 is required for the RTCA cycle to produce metabolites in the TCA cycle. Moreover, CO2 is essential for assimilating acetate and pyruvate through the CO2-anaplerotic pathway and pyruvate synthesis from acetyl-CoA.  相似文献   

11.
In a previous study, an Escherichia coli strain lacking the key enzymes (acetate kinase and phosphotransacetylase, ACK-PTA) of the major acetate synthesis pathways reduced acetate accumulation. The ackA-pta mutant strain also exhibits an increased lactate synthesis rate. Metabolic flux analysis suggested that the majority of excessive carbon flux was redirected through the lactate formation pathway rather than the ethanol synthesis pathway. This result indicated that lactate dehydrogenase may be competitive at the pyruvate node. However, a 10-fold overexpression of the fermentative lactate dehydrogenase (ldhA) gene in the wild-type parent GJT001 was not able to divert carbon flux from acetate. The carbon flux through pyruvate and all its end products increases at the expense of flux through biosynthesis and succinate. Intracellular pyruvate measurements showed that strains overexpressing lactate dehydrogenase (LDH) depleted the pyruvate pool. This observation along with the observed excretion of pyruvate in the ackA-pta strain indicates the significance of intracellular pyruvate pools. In the current study, we focus on the role of the intracellular pyruvate pool in the redirection of metabolic fluxes at this important node. An increasing level of extracellular pyruvate leads to an increase in the intracellular pyruvate pool. This increase in intracellular pyruvate affects carbon flux distribution at the pyruvate node. Partitioning of the carbon flux to acetate at the expense of ethanol occurs at the acetyl-CoA node while partitioning at the pyruvate node favors lactate formation. The increased competitiveness of the lactate pathway may be due to the allosteric activation of LDH as a result of increased pyruvate levels. The interaction between the reactions catalyzed by the enzymes PFL (pyruvate formate lyase) and LDH was examined.  相似文献   

12.
We have reexamined the concept that glucagon controls gluconeogenesis from lactate-pyruvate in isolated rat hepatocytes almost entirely by inhibition of flux through pyruvate kinase, thereby making gluconeogenesis more efficient. 1. We tested and refined the 14C-tracer technique that has previously yielded the opposite conclusion, that is, that inhibition of pyruvate kinase is a relatively unimportant mechanism. The tracer procedure, as used by us, was found to be insensitive to the size of the pyruvate pool, and experiments using modifications of the technique to obviate a number of other potential errors support the earlier conclusion that control of pyruvate kinase is not the predominant mechanism. 2. Any stimulation of formation of glucose that results from inhibition of pyruvate kinase is the consequence of elevation of the steady-state concentrations of phosphoenolpyruvate and all subsequent intermediates in the gluconeogenic pathway. During ongoing stimulation of glucose synthesis by glucagon in isolated hepatocytes, the concentrations of all measured intermediate compounds between phosphoenolpyruvate and glucose were elevated except triose phosphates and fructose 1,6-bisphosphate. The failure of these compounds to rise above control levels indicates that not all gluconeogenic reactions beyond pyruvate kinase were accelerated thermodynamically as would occur with predominant control at pyruvate kinase. We conclude, therefore, that although glucagon inhibits flux through the pyruvate kinase reaction, this does not account for most of the stimulation of gluconeogenesis. Major control sites are also within the pyruvate-phosphoenolpyruvate segment and the fructose 1,6-bisphosphate cycle.  相似文献   

13.
A previous 13C NMR technique (Malloy, C. R., Sherry, A.D., and Jeffrey, F.M.H. (1987) FEBS Lett. 212, 58-62) for measuring the relative flux of molecules through the oxidative versus anaplerotic pathways involving the citric acid cycle of the rat heart has been extended to include a complete analysis of the entire glutamate 13C spectrum. Although still simple in practice, this more sophisticated model allows an evaluation of 13C fractional enrichment of molecules entering both the oxidative and anaplerotic pathways under steady-state conditions. The method was used to analyze 13C NMR spectra of intact hearts or their acid extracts during utilization of 13C-enriched pyruvate, propionate, acetate, or various combinations thereof. [2-13C]Pyruvate was used to prove that steady-state flux of pyruvate through pyruvate carboxylase is significant during co-perfusion of pyruvate and acetate, and we demonstrate for the first time that a nine-line 13C multiplet may be detected in an intact, beating heart. Acetate or pyruvate alone provided about 86% of the acetyl-CoA; in combination, about 65% of the acetyl-CoA was derived from acetate, about 30% was derived from pyruvate, and the remainder from endogenous sources. Propionate reduced the contribution of exogenous acetate to acetyl-CoA to 77% and also reduced the oxidation of endogenous substrates. Equations are presented which allow this same analysis on multiply labeled substrates, making this technique extremely powerful for the evaluation of substrate selection and relative metabolic flux through anaplerotic and oxidative pathways in the intact heart.  相似文献   

14.
A method for the determination of substrate flux through the pentose cycle was developed employing [1-14C]glucose in experiments with perfused rat livers. The method consists first of a kinetic analysis which differentiates between the production of 14CO2 from [1-14C]glucose via the pentose cycle and via the citrate cycle and, second of a calculation of the specific radioactivity of the hexose monophosphate pool from measured rates of glycolysis and the specific radioactivity of lactate released into the perfusate. The method was validated by experiments comparing the results of tracer infusions with [1-14C]glucose, [6-14C]glucose and [3-14C]pyruvate. In livers from fed rats perfused with 10 mM glucose, the rate of substrate flux through the pentose cycle was around 0.2 mumol X min-1 X g-1; it was about 20% of the substrate flux via glycolysis. The kinetic data were inconsistent with the existence of an L-type pentose cycle in liver.  相似文献   

15.
The response of Escherichia coli central carbon metabolism to genetic and environmental manipulation has been studied by use of a recently developed methodology for metabolic flux ratio (METAFoR) analysis; this methodology can also directly reveal active metabolic pathways. Generation of fluxome data arrays by use of the METAFoR approach is based on two-dimensional (13)C-(1)H correlation nuclear magnetic resonance spectroscopy with fractionally labeled biomass and, in contrast to metabolic flux analysis, does not require measurements of extracellular substrate and metabolite concentrations. METAFoR analyses of E. coli strains that moderately overexpress phosphofructokinase, pyruvate kinase, pyruvate decarboxylase, or alcohol dehydrogenase revealed that only a few flux ratios change in concert with the overexpression of these enzymes. Disruption of both pyruvate kinase isoenzymes resulted in altered flux ratios for reactions connecting the phosphoenolpyruvate (PEP) and pyruvate pools but did not significantly alter central metabolism. These data indicate remarkable robustness and rigidity in central carbon metabolism in the presence of genetic variation. More significant physiological changes and flux ratio differences were seen in response to altered environmental conditions. For example, in ammonia-limited chemostat cultures, compared to glucose-limited chemostat cultures, a reduced fraction of PEP molecules was derived through at least one transketolase reaction, and there was a higher relative contribution of anaplerotic PEP carboxylation than of the tricarboxylic acid (TCA) cycle for oxaloacetate synthesis. These two parameters also showed significant variation between aerobic and anaerobic batch cultures. Finally, two reactions catalyzed by PEP carboxykinase and malic enzyme were identified by METAFoR analysis; these had previously been considered absent in E. coli cells grown in glucose-containing media. Backward flux from the TCA cycle to glycolysis, as indicated by significant activity of PEP carboxykinase, was found only in glucose-limited chemostat culture, demonstrating that control of this futile cycle activity is relaxed under severe glucose limitation.  相似文献   

16.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

17.
18.
The response of the central carbon metabolism of Escherichia coli to temperature-induced recombinant production of human fibroblast growth factor was studied on the level of metabolic fluxes and intracellular metabolite levels. During production, E. coli TG1:plambdaFGFB, carrying a plasmid encoded gene for the recombinant product, revealed stress related characteristics such as decreased growth rate and biomass yield and enhanced by-product excretion (acetate, pyruvate, lactate). With the onset of production, the adenylate energy charge dropped from 0.85 to 0.60, indicating the occurrence of a severe energy limitation. This triggered an increase of the glycolytic flux which, however, was not sufficient to compensate for the increased ATP demand. The activation of the glycolytic flux was also indicated by the readjustment of glycolytic pool sizes leading to an increased driving force for the reaction catalyzed by phosphofructokinase. Moreover, fluxes through the TCA cycle, into the pentose phosphate pathway and into anabolic pathways decreased significantly. The strong increase of flux into overflow pathways, especially towards acetate was most likely caused by a flux redirection from pyruvate dehydrogenase to pyruvate oxidase. The glyoxylate shunt, not active during growth, was the dominating anaplerotic pathway during production. Together with pyruvate oxidase and acetyl CoA synthase this pathway could function as a metabolic by-pass to overcome the limitation in the junction between glycolysis and TCA cycle and partly recycle the acetate formed back into the metabolism.  相似文献   

19.
alpha-Ketoisocaproate (ketoleucine) is shown to be metabolized to ketone bodies rapidly by isolated rat liver cells. Acetoacetate is the major end product and maximum rates were observed with 2 mM substrate. Studies with 2-tetradecylglycidic acid (an inhibitor of long chain fatty acid oxidation) showed that ketogenesis from alpha-ketoisocaproate and from endogenous fatty acids were additive. With alpha-ketoisocaproate present as soole substrate at 2 mM, leucine production was less than 10% of alpha-ketoisocaproate uptake and only 30% of the acetyl coenzyme A generated was oxidized in the citric acid cycle. Metabolism of alpha-ketoisocaproate was inhibited by fatty acids, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, and pyruvate. Oxidation of acetyl-CoA generated from alpha-ketoisocaproate was suppressed by oleate and by pyruvate, but was enhanced by lactate. Metabolism between the different branched chain alpha-ketoacids was mutually competitive. When alpha-ketoisocaproate (2 mM) was added in the presence of high pyruvate concentrations (4.4 mM), flux through pyruvate dehydrogenase was decreased, and the proportion of total pyruvate dehydrogenase in the active form (PDHa) also fell. With lactate as substrate, PDHa was only 25% of total activity and was little affected by addition of alpha-ketoisocaproate. These data suggest that enhanced oxidation of acetyl-CoA from alpha-ketoisocaproate by lactate addition is caused by a low activity of pyruvate dehydrogenase combined with increased flux through the citric acid cycle in response to the energy requirements for gluconeogenesis. However, acetyl-CoA generation from pyruvate is apparently insufficiently inhibited by alpha-ketoisocaproate to cause a diversion of acetyl-CoA formed during alpha-ketoisocaproate metabolism from ketone body formation to oxidation in the citric acid cycle. Measurements of the cell contents of CoASH, acetyl-CoA, acid-soluble acyl-CoA, and acid-insoluble fatty acyl-CoA indicated that when the branched chain alpha-ketoacids were added as sole substrate, their oxidation was limited at a step distal to the branched chain alpha-ketoacid dehydrogenase. Acid-soluble acyl-CoA derivatives were depleted after oleate addition in the presence of alpha-ketoisocaproate, suggesting an inhibition of the branched chain alpha-ketoacid dehydrogenase by the elevation of the mitochondrial NADH/NAD+ ratio observed during fatty acid oxidation. This effect was not observed in the presence of oleate and 2-tetradecylglycidic acid.  相似文献   

20.
The metabolism of hydroxypyruvate to oxalate was studied in isolated rat hepatocytes. [14C]Oxalate was produced from [2-14C]- and [3-14C]- but not [1-14C]hydroxypyruvate. No oxalate was produced from similarly labeled pyruvate. The mechanism by which hydroxypyruvate is metabolized to oxalate involves decarboxylation at the carbon 1 position as the initial step. This activity was distinct from that which produced CO2 from the carbon 1 position of pyruvate. Hydroxypyruvate decarboxylase activity was found mainly in the mitochondria, with the remainder (25%) in the cytosol. No activity was present in the peroxisomes, the probable site of oxalate production from glycolate and glyoxylate. Hydroxypyruvate, but not pyruvate stimulated [14C]oxalate production from [U-14C]fructose, suggesting that hydroxypyruvate is either an intermediate in the fructose-oxalate pathway, or that it prevents carbon from leaving that pathway. The lack of effect of pyruvate in this regard is evidence against redox being the primary effect of hydroxypyruvate and focuses attention on hydroxypyruvate and its precursors as important sources of carbon for oxalate synthesis from both carbohydrate and protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号