首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C14orf28 [alias dopamine receptor-interacting protein (DRIP1)] is belonging to the family of DRIPs. However, the function of C14orf28 in cancer remains unclear. Herein, we found that C14orf28 was upregulated in colorectal cancer tissues compared to the adjacent non-tumor tissues. Overexpression of C14orf28 promoted the cellular proliferation, migration, invasion of colorectal cancer cells. In addition, C14orf28 inhibited apoptosis and promoted the EMT process. To explore the mechanism of dysregulation, C14orf28 was identified to be a target of miR-519d by targeting its 3′UTR. Furthermore, in agreement, C14orf28 overexpression counteracted the inhibitory effect of miR-519d. Together, these results evidenced that C14orf28 downregulated by miR-519d contributes to tumorigenesis and might provide new potential targets for colorectal cancer therapy.  相似文献   

2.
Chitinous materials have been studied in wound healing and artificial skin substitutes for many years. Nitric oxide (NO) has been shown to contribute to cytotoxicity in cell proliferation during inflammation of wound healing. In this study, we examined the effect of chitin and its derivatives on NO production by activated RAW 264.7 macrophages. Chitin and chitosan showed a significantly inhibitory effect on NO production by the activated macrophages. Hexa-N-acetylchitohexaose and penta-N-acetylchitopentaose also inhibited NO production but with less potency. However, N-acetylchitotetraose, -triose, -biose, and monomer of chitin, N-acetylglucosamine and glucosamine had little effect on NO production by the activated cells. These results suggest that the promotive effect of chitinous material on wound healing be related, at least partly, to inhibit NO production by the activated macrophages.  相似文献   

3.
The effects of oxidatively modified low density lipoprotein (oxLDL) on atherogenesis may be partly mediated by alterations in the production of nitric oxide (NO) by vascular cells. Lipid hydroperoxides (LOOH) and lysophosphatidylcholine (lysoPC) are the major primary products of LDL oxidation. The purpose of this study was to characterize the effects of oxLDL, LOOH and lysoPC on NO production and the expression of inducible nitric oxide synthase (iNOS) gene in lipopolysaccharide (LPS) stimulated macrophages. LDL was oxidized using an azo-initiator 2,2'-azobis (2-amidinopropane) HCl (ABAP) and octadecadienoic acid was oxidized by lipoxygenase to generate 13-hydroperoxyl octadecadienoic acid (13-HPODE). Our study showed that oxLDL markedly decreased the production of NO, the levels of iNOS protein and iNOS mRNA in LPS stimulated macrophages. The inhibition potential of oxLDL on NO production and iNOS gene expression depended on the levels of LOOH formed in oxLDL and was not due to oxLDL cytotoxicity. Furthermore, 13-HPODE markedly reduced NO production and iNOS protein levels, whereas lysoPC showed only slight reduction. The effects of 13-HPODE and lysoPC did not require an acetylated LDL carrier. Our results suggest that 13-HPODE is a much more potent inhibitor of NO production and iNOS gene expression than lysoPC in LPS stimulated RAW264.7 macrophages.  相似文献   

4.
In this article, a series of 22 triarylpyrazole derivatives were evaluated for in vitro antiinflammatory activity as inhibitors of nitric oxide (NO) and prostaglandin E2 (PGE2) release induced by lipopolysaccharide (LPS) in murine RAW 264.7 macrophages. The synthesized compounds 1a-h, 2a-f and 3a-h were first examined for their cytotoxicity for determination of the non-toxic concentration for antiinflammatory screening, so that the inhibitory effects against NO and PGE2 production were not caused by non-specific cytotoxicity. Compounds 1h and 2f were the most active PGE2 inhibitors with IC50 values of 2.94 μM and 4.21 μM, respectively. Western blotting and cell-free COX-2 screening revealed that their effects were due to inhibition of COX-2 protein expression. Moreover, compound 1h exerted strong inhibitory effect on the expression of COX-2 mRNA in LPS-induced murine RAW 264.7 macrophages.  相似文献   

5.
A series of naturally occurring 3,3-dimethylallyloxy- and geranyloxycoumarins and alkaloids were chemically synthesized and tested as anti-inflammatory agents for their inhibitory effects on nitric oxide production in LPS-stimulated RAW 264.7 cells. Results indicated that the alkaloid of fungal origin 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy]quinoline-2-carboxylate, commonly known as Ppc-1, and coumarins having an unsubstituted 2-benzopyrone ring exhibited the highest activity with IC50 values from 23 to 34 μM without having poor or not detectable cytotoxicity. Indomethacine and L-NAME used as reference drugs provided by far less activities.  相似文献   

6.
7.
The possible effects of ultra-wideband (UWB) pulses on cellular nitric oxide production were tested by measuring nitrite in the medium bathing UWB exposed RAW 264.7 macrophages. A 30 min exposure to 1 ns UWB pulses, repeated at 600 Hz with an estimated SAR of 0.106 W/kg, did not change nitric oxide production by RAW 264.7 cells, with or without stimulation by gamma interferon and lipopolysaccharide. However, when nitrate was added to the medium of stimulated cells, nitric oxide production increased after UWB exposure, indicating a possible action of UWB pulses on induced nitric oxide synthase under certain conditions.  相似文献   

8.
The activity-guided fractionation of the MeOH extract of the rhizomes and roots of Nardostachys chinensis led to the isolation of two new sesquiterpenoids, narchinol B (8) and narchinol C (9), along with 10 known compounds, ursolic acid (1), nardosinone (2), pinoresinol (3), desoxo-narchinol A (4), kanshone B (5), epoxyconiferyl alcohol (6), debilon (7), 4α,5-dimethyl-1,3-dioxo-1,2,3,4,4α,5,6,7-octahydronaphthalene (10), p-coumaric acid (11), and isoferulic acid (12). Their structures were determined using spectroscopic techniques, which included 1D- and 2D-NMR. Among the isolates, compounds 2, 4, 5, 8 and 9 showed inhibitory activity against LPS-induced NO production with IC(50) values of 4.6-21.6 μM.  相似文献   

9.
10.
11.
Bioactivity-guided isolation of the methanol extract of the stems of Dendrobium nobile yielded a new phenanthrene together with nine known phenanthrenes and three known bibenzyls. Their structures were elucidated by analysis of the spectroscopic data including 2D-NMR. All of the isolates were evaluated for their potential to inhibit the LPS-induced production of nitric oxide in murine macrophage RAW 264.7 cells. Compounds 14, 713 inhibited nitric oxide production with the IC50 values ranging from 9.6 μM to 35.7 μM.  相似文献   

12.
The heat shock response protects against sepsis-induced mortality, organ injury, cardiovascular dysfunction, and apoptosis. Several inducers of the heat shock response, such as hyperthermia, sodium arsenite, and pyrollidine dithiocarbonate, inhibit NF-κB activation and nitric oxide formation. The antioxidant lipoic acid (LA) has recently been found to inhibit NF-κB activation and nitric oxide formation. We therefore tested the hypothesis that LA induces a heat shock response. To test this hypothesis, we determined whether exposure to LA affects expression of both heat shock protein 70 (HSP-70) and nuclear heat shock factor-1 (HSF-1) in lipopolysaccharide (LPS) stimulated macrophages. LA and hyperthermia attenuated LPS-induced increases in nuclear NF-κB, iNOS protein, and media nitrite concentrations. LPS and hyperthermia increased HSP-70 concentrations 8-fold and 20-fold, respectively. No effect of LA treatment alone on HSP-70 protein expression was detected. Likewise, no effect of LA on HSF-1 protein expression was detected. These data suggest that LA inhibits LPS-induced activation of iNOS in macrophages independent of the heat shock response.  相似文献   

13.
This study was designed to isolate and identify a potent inhibitory compound against nitric oxide (NO) production from the stem bark of Ulmus pumila L. Ethyl acetate fraction of hot water extract registered a higher level of total phenolics (756.93 mg GAE/g) and also showed strong DPPH (IC50 at 5.6 μg/mL) and ABTS (TEAC value 0.9703) radical scavenging activities than other fractions. Crude extract and its fractions significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells indicating that they potentially inhibited the NO production in a concentration dependent manner. Based on higher inhibitory activity, the ethyl acetate fraction was subjected to Sephadex LH-20 column chromatography and yielded seven fractions and all these fractions registered appreciable levels of inhibitory activity on NO production. The most effective fraction F1 was further purified and subjected to 1H, 13C-NMR and mass spectrometry analysis and the compound was identified as icariside E4. The results suggest that the U. pumila extract and the isolated compound icariside E4 effectively inhibited the NO production and may be useful in preventing inflammatory diseases mediated by excessive production of NO.  相似文献   

14.
15.
Butein has been reported to exert anti-inflammatory effect but the possible mechanism involved is still unclear. Here, we report the inhibitory effect of butein on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression. Butein also inhibited the induction of tumor necrosis factor-alpha and cyclooxygenase 2 by LPS. To further investigate the mechanism responsible for the inhibition of iNOS gene expression by butein, we examined the effect of butein on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by butein, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaB and phosphorylation of Erk1/2 MAP kinase. Furthermore, increased binding of the osteopontin alphavbeta3 integrin receptor by butein may explain its inhibitory effect on LPS-mediated NO production. Taken together, these results suggest that butein inhibits iNOS gene expression, providing possible mechanisms for its anti-inflammatory action.  相似文献   

16.
Osteopontin is induced by nitric oxide in RAW 264.7 cells   总被引:1,自引:0,他引:1  
Nitric oxide (NO) produced by macrophages is thought to contribute to various pathological conditions. Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of NO production. However, the relationship between NO and endogenous OPN in activated macrophages has not yet been elucidated. We therefore examined expression of endogenous iNOS and OPN in a murine macrophage cell line, RAW 264.7 cells, by treating the cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). Treatment of cells with LPS and IFN-gamma resulted in an increase of iNOS mRNA to maximum at 12 h after stimulation. In contrast, OPN mRNA was induced more slowly than iNOS mRNA. Induction of both iNOS and OPN mRNA in RAW 264.7 cells was markedly suppressed by addition of the specific iNOS inhibitor S-2-aminoethyl isothiourea dihydrobromide. The NOS inhibitor NG-methyl-L-arginine also suppressed induction of OPN mRNA but hardly affected iNOS mRNA expression. The NO-releasing agent spermine-NONOate but not peroxynitrite enhanced induction of OPN mRNA. These results suggest that NO directly up-regulates the endogenous OPN in macrophages stimulated with LPS and IFN-gamma. This up-regulation of endogenous OPN may represent a negative feedback system acting to reduce iNOS expression.  相似文献   

17.
18.
The 80% methanolic extract of Euonymus alatus leaves and twigs afforded three new lignans, (−)-threo-4,9,4′,9′-tetrahydroxy-3,7,3′,5′-tetramethoxy-8-O-8′-neolignan (1), (−)-threo-4,9,4′,9′-tetrahydroxy-3,5,7,3′-tetramethoxy-8-O-8′-neolignan (2), (7R,8R,7′R)-(+)-lyoniresinol (3), together with seventeen known lignans (4-20). The structures of 1-20 were elucidated by extensive 1D and 2D spectroscopic methods including 1H NMR, 13C NMR, 1H-1H COSY, HMQC, HMBC and NOESY. All the isolated compounds except for dilignans (19 and 20) significantly inhibited nitric oxide production in lipopolysaccharide-stimulated RAW264.7 cells.  相似文献   

19.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号