首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems.  相似文献   

2.
The potential of magnetic nanoparticles (MNPs) in drug delivery systems (DDSs) is mainly related to its magnetic core and surface coating. These coatings can eliminate or minimize their aggregation under physiological conditions. Also, they can provide functional groups for bioconjugation to anticancer drugs and/or targeted ligands. Chitosan, as a derivative of chitin, is an attractive natural biopolymer from renewable resources with the presence of reactive amino and hydroxyl functional groups in its structure. Chitosan nanoparticles (NPs), due to their huge surface to volume ratio as compared to the chitosan in its bulk form, have outstanding physico-chemical, antimicrobial and biological properties. These unique properties make chitosan NPs a promising biopolymer for the application of DDSs. In this review, the current state and challenges for the application magnetic chitosan NPs in drug delivery systems were investigated. The present review also revisits the limitations and commercial impediments to provide insight for future works.  相似文献   

3.
  1. Download : Download high-res image (392KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
Nanoparticles of approximately 10nm in diameter made with chitosan or lactic acid-grafted chitosan were developed for high drug loading and prolonged drug release. A drug encapsulation efficiency of 92% and a release rate of 28% from chitosan nanoparticles over a 4-week period were demonstrated with bovine serum protein. To further increase drug encapsulation, prolong drug release, and increase chitosan solubility in solution of neutral pH, chitosan was modified with lactic acid by grafting D,L-lactic acid onto amino groups in chitosan without using a catalyst. The lactic acid-grafted chitosan nanoparticles demonstrated a drug encapsulation efficiency of 96% and a protein release rate of 15% over 4 weeks. With increased protein concentration, the drug encapsulation efficiency decreased and drug release rate increased. Unlike chitosan, which is generally soluble only in acid solution, the chitosan modified with lactic acid can be prepared from solutions of neutral pH, offering an additional advantage of allowing proteins or drugs to be uniformly incorporated in the matrix structure with minimal or no denaturization.  相似文献   

6.
Nanoparticles (NPs) composed of chitosan (CS) and poly(gamma-glutamic acid) (gamma-PGA) were prepared by a simple ionic-gelation method for oral insulin delivery. Fourier transform infrared (FT-IR) spectra indicated that CS and gamma-PGA were ionized at pH 2.5-6.6, while X-ray diffractograms demonstrated that the crystal structure of CS was disrupted after it was combined with gamma-PGA. The diameters of the prepared NPs were in the range of 110-150 nm with a negative or positive surface charge, depending on the relative concentrations of CS to gamma-PGA used. The NPs with a positive surface charge (or shelled with CS) could transiently open the tight junctions between Caco-2 cells and thus increased the paracellular permeability. After loading of insulin, the NPs remained spherical and the insulin release profiles were significantly affected by their stability in distinct pH environments. The in vivo results clearly indicated that the insulin-loaded NPs could effectively reduce the blood glucose level in a diabetic rat model.  相似文献   

7.
Microparticles and nanoparticles for drug delivery   总被引:3,自引:0,他引:3  
Particulate drug delivery systems have become important in experimental pharmaceutics and clinical medicine. The distinction is often made between micro- and nanoparticles, being particles with dimensions best described in micrometers and nanometers respectively. That size difference entails real differences at many levels, from formulation to in vivo usage. Here I will discuss those differences and provide examples of applications, for local and systemic drug delivery. I will outline a number of challenges of interest in particulate drug delivery.  相似文献   

8.
Nanotechnology plays an important role in advanced biology and medicine research particularly in the development of potential site-specific delivery systems with lower drug toxicity and greater efficiency. These include microcapsules, liposomes, polymeric microspheres, microemulsions, polymer micelles, hydrogels, solid nanoparticles etc. In the present study, preparation and characterization of biopolymeric gelatin nanoparticles for encapsulating the antimicrobial drug sulfadiazine and its in vivo drug release in phosphate buffer saline (PBS) have been investigated. The nanoparticles prepared by second desolvation process varied in a size range 200 nm and 600 nm with a drug entrapment efficiency of 50% characterized by atomic force microscopy and dynamic light scattering. The drug release from the nanoparticles occurred up to 30% in a controlled manner.  相似文献   

9.
Magnetic nanoparticles for gene and drug delivery   总被引:1,自引:0,他引:1  
Investigations of magnetic micro- and nanoparticles for targeted drug delivery began over 30 years ago. Since that time, major progress has been made in particle design and synthesis techniques, however, very few clinical trials have taken place. Here we review advances in magnetic nanoparticle design, in vitro and animal experiments with magnetic nanoparticle-based drug and gene delivery, and clinical trials of drug targeting.  相似文献   

10.
Various bio-medical applications of magnetic nanoparticles have been explored during the past few decades. As tools that hold great potential for advancing biological sciences, magnetic nanoparticles have been used as platform materials for enhanced magnetic resonance imaging (MRI) agents, biological separation and magnetic drug delivery systems, and magnetic hyperthermia treatment. Furthermore, approaches that integrate various imaging and bioactive moieties have been used in the design of multi-modality systems, which possess synergistically enhanced properties such as better imaging resolution and sensitivity, molecular recognition capabilities, stimulus responsive drug delivery with on-demand control, and spatio-temporally controlled cell signal activation. Below, recent studies that focus on the design and synthesis of multi-mode magnetic nanoparticles will be briefly reviewed and their potential applications in the imaging and therapy areas will be also discussed.  相似文献   

11.
Chitosan, alpha-(1-4)-amino-2-deoxy-beta-D-glucan, is a deacetylated form of chitin, an abundant natural polysaccharide present in crustacean shells. Its unique characteristics such as positive charge, biodegradability, biocompatibility, nontoxicity, and rigid linear molecular structure make this macromolecule ideal as drug carrier. The association between chitosan and liposomes was carefully described, where REVs (reverse phase evaporation vesicles) were sandwiched by chitosan. The usage of these particles in vaccine formulation is here proposed for the first time in the literature. The Chitosan-REVs now stabilized by polyvinilic alcohol were the vehicle for Diphtheria toxoid (Dtxd). Round chitosan-sandwiched REVs (REVs-Chi) particles of 373 +/- 17 nm containing 65% Dtxd were obtained. After 200 min of incubation in a simulated gastric fluid, 70% of the Dtxd was liberated from REVs-Chi in comparison to 100% of Dtxd liberated from pure REVs. In PBS, the Dtxd liberation from REVS-Chi was about 60%. Mice were immunized with Dtxd encapsulated within REVs-Chi and with other REVs/Dtxd formulations adsorbed onto Freund adjuvant or alumen [AIF and Al(OH)(3)]. The response patterns and the immune maturity were measured by IgG(1) and IgG(2a) titrations. REVs-Chi containing Dtxd elicited both antibodies production giving the animals higher immune response and selectivity. It was interesting that the memory of those mice immunized with REVs-Chi containing Dtxd enhanced, after booster, antibody production by 47% in contrast with 17 and 7% in mice immunized with the antigen vehiculated in REVs-AIF or REVs-Al(OH)(3), respectively.  相似文献   

12.
With an increasing number of lipophilic drugs under development, homolipids and heterolipids have gained renewed interests as excipients for oral drug delivery systems. Oral administration has many advantages for chronic drug therapy. It is relatively safe, convenient for the patient and allows self administration. This article is not intended to review the broad area of lipid-based vehicle for oral drug delivery comprehensively. The rationale behind choosing lipids materials for pharmaceutical dosage forms and their applications is discussed. It also comments on the methods for monitoring the physicochemical properties of vehicles and formulations and describes a range of pharmacopoeial excipients suitable for these purposes. The excipients selected here are pharmacopoeial in European Pharmacopoeia 4th Ed., United States Pharmacopoeia 24th Ed./National Formulary 19th Ed. and Japanese Pharmacopoeia 13th Ed. or are drafted in Pharmaeuropa and Pharmacopoeial Forum. Widening availability of lipidic excipients with specific characteristics offer flexibility of application with respect to improving the bioavailability of poorly water-soluble drugs and manipulating release profiles.  相似文献   

13.
Under appropriate conditions, block copolymeric macroamphiphiles will self-assemble in water to form vesicles, referred to as polymersomes. We report here polymersomes that can protect biomolecules in the extracellular environment, are taken up by endocytosis, and then suddenly burst within the early endosome, releasing their contents prior to exposure to the harsh conditions encountered after lysosomal fusion. Specifically, block copolymers of the hydrophile poly(ethylene glycol) (PEG) and the hydrophobe poly(propylene sulfide) (PPS) were synthesized with an intervening disulfide, PEG17-SS-PPS30. Polymersomes formed from this block copolymer were demonstrated to disrupt in the presence of intracellular concentrations of cysteine. In cellular experiments, uptake, disruption, and release were observed within 10 min of exposure to cells, well within the time frame of the early endosome of endolysosomal processing. This system may be useful in cytoplasmic delivery of biomolecular drugs such as peptides, proteins, oligonucleotides, and DNA.  相似文献   

14.
It was aim of the study to investigate the in vivo potential of a novel insulin-thiomer complex nanoparticulate delivery system. Insulin loaded nanoparticles were obtained by the formation of hydrogen bonds between poly(vinyl pyrrolidone) (PVP) and poly(acrylic acid)-cysteine (PAA-Cys) or poly(acrylic acid) (PAA), respectively, in the presence of insulin. Dissolution behavior of insulin from tablets as well as nanoparticulate suspensions was evaluated in vitro. Serum insulin concentrations and reduction of blood sugar values were determined after oral administration of nanoparticles formulated as enteric coated tablets and suspensions. Results displayed a low serum insulin concentration and pharmacological efficacy in terms of blood sugar reduction after oral administration of enteric coated tablets. On the contrary, nanoparticulate suspensions led to significant serum insulin concentrations. Furthermore a 2.3-fold improvement of the AUC of insulin could be achieved due to the use of thiolated PAA instead of unmodified PAA. In addition, a blood sugar reduction of 22% was observed. Results demonstrate that this novel complex nanoparticulate formulation is an encouraging new attempt toward the noninvasive delivery of peptide drugs.  相似文献   

15.
The ability of a hydrogel obtained by crosslinking INUDV and PEGBa to facilitate sustained release of flutamide is examined. The hydrogel is prepared in pH?=?7.4 PBS and no toxic solvents or catalysts are used. It is recovered in microparticulate form and its size distribution is determined. Mucoadhesive properties are evaluated in vitro by reproducing gastrointestinal conditions. Flutamide is loaded into the hydrogel using a post-fabrication encapsulation procedure that allows a drug loading comparable to that of market tablets. Drug-loaded microparticles are orally administered to cross-bred dogs and the in vivo study demonstrates their ability to prolong the half-life of the principal active metabolite approximately threefold and to significantly increase its bioavailability.  相似文献   

16.
Chitosan nanoparticles (CS NPs) of a controlled size (below 100 nm) and narrow size distribution were obtained through the process of ionic gelation between CS and sodium tripolyphosphate (TPP). A high degree of CS deacetylation and narrow polymer molecular weight distribution were demonstrated to be critical for the controlling particle size distribution. Properties of the CS NPs were examined at different temperatures, values of pH, and ratios of CS to TPP. The model protein, bovine serum albumin, was encapsulated into the NPs, and the in vitro release profiles were examined in physiologically relevant media at 37 degrees C.  相似文献   

17.
The covalently cross-linked chitosan-poly(ethylene glycol)1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG1540-dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2 h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12 h. The results proved that the release-and-hold behavior of the cross-linked CS–PEG1540H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery.  相似文献   

18.
Nanoparticles comprising Alginate/Chitosan polymers were prepared by pregel preparation method through drop wise addition of various concentrations of CaCl2 to a defined concentration of Sodium Alginate. Then, Chitosan/Antisense solution with a certain N/P ratio was added to the pregel to make the nanoparticles. The effect of such parameters as polymer ratio, CaCl2/Alginate ratio and N/P ratio on the particle size distribution and loading efficacy was studied. The optimum conditions were 1:1 (w/w) Alginate to Chitosan ratio, 0.2% CaCl2/Alginate ratio and N/P ratio of 5 at pH 5.3. The resulting nanoparticles had a loading efficacy of 95.6% and average size of 194 nm as confirmed by PCS method and SEM images showed spherical and smooth particles. The zeta potential of optimized nanoparticles prepared by this method was about +30 mV which could result in good stability of nanoparticles during manipulation and storage.  相似文献   

19.
The application of nanotechnology in medicine, known as nanomedicine, has introduced a plethora of nanoparticles of variable chemistry and design considerations for cancer diagnosis and treatment. One of the most important field is the design and development of pharmaceutical drugs, based on targeted drug delivery system (TDDS). Being inspired by physio-chemical properties of nanoparticles, TDDS are designed to safely reach their targets and specifically release their cargo at the site of disease for enhanced therapeutic effects, thereby increasing the drug tissue bioavailability. Nanoparticles have the advantage of targeting cancer by simply being accumulated and entrapped in cancer cells. However, even after rapid growth of nanotechnology in nanomedicine, designing an effective targeted drug delivery system is still a challenging task. In this review, we reveal the recent advances in drug delivery approach with a particular focus on gold nanoparticles. We seek to expound on how these nanomaterials communicate in the complex environment to reach the target site, and how to design the effective TDDS for complex environments and simultaneously monitor the toxicity on the basis of designing such delivery complexes. Hence, this review will shed light on the research, opportunities and challenges for engineering nanomaterials with cancer biology and medicine to develop effective TDDS for treatment of cancer.  相似文献   

20.
The acid-labile poly(ethyleneglycol)-diorthoester-distearoylglycerol lipid (POD), was used with a cationic lipid-phosphatidylethanolamine mixture to prepare stabilized plasmid-lipid nanoparticles (POD SPLP) that could mediate gene transfer in vitro by a pH triggered escape from the endosome. Nanoparticles of 60 nm diameter were prepared at pH 8.5 using a detergent dialysis method. The DNA encapsulation efficiency in the nanoparticles was optimal between 10 and 13 mol % ratio of cationic lipid and at a POD content of 20 mol %. The apparent zeta potential of the nanoparticles at 1 mM salt and pH 7.5 was positive, indicating cationic lipid on the external surface. However, the external layer of the nanoparticles was depleted in the cationic component compared to the starting mole ratio. Low pH sensitivity of the POD SPLP was characterized by a lag phase followed by a rapid collapse; at pH 5.3 the nanoparticles collapsed in 100 min. Nanoparticles prepared from a pH-insensitive PEG-lipid, PEG-distearoylglycerol had similar physicochemical characteristics as the POD SPLP but did not collapse at low pH. The POD SPLP had up to 3 orders of magnitude greater gene transfer activity than did the pH-insensitive nanoparticles. Both the pH-sensitive and pH-insensitive nanoparticles were internalized to a qualitatively similar extent in a punctate pattern into cultured cells within 2 h of incubation with the cells; thus, increased gene transfer of the POD SPLP was due to a more rapid escape from the endosome rather than to greater cell association of these nanoparticles. These results suggest that the pH-sensitive stabilized plasmid-lipid nanoparticles may be a useful component of a synthetic vector for parenterally administered gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号