首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rod outer segments of photoreceptors are characterized by rhodopsin, a membrane protein surrounded by phospholipids containing a very high concentration of polyunsaturated fatty acids. These fatty acids can propagate free radicals, initiated by peroxidation, whose recombination is eventually associated with light emission as chemiluminescence. The results reported here indicate that this effect produces an isomerization of the retinal (bleaching effect) of the rhodopsin, similar to that induced by light in normal vision. In vitro experiments on detergent-suspended rod outer segments (RdOS) from bovine eyes, using an enzymatic source of radicals, xanthine/xanthine oxidase, were carried out. The results indicate that the proposed mechanism is likely, because they can show the bleaching of rhodopsin in RdOS, owing to its extraordinary sensitivity. Thus this mechanism is, also, a possible explanation for anomalous visual effects such as light flashes (phosphene-like) perceived by humans. The functionality of the rhodopsin in the RdOS was first tested by visible light. Rhodopsin reactivation after bleaching was obtained by adding cis-retinal to the suspension, demonstrating the reversibility of the bleaching process. A special experimental system was developed to observe the bleaching from luminescence by radical recombination, avoiding physical contact between the rod outer segment suspension and the radicals to prevent radical-induced damage and modifications of the delicate structure of the rod outer segment.  相似文献   

2.
Highly purified bovine rod outer segment membranes show loss of structural integrity under an air atmosphere. Obvious ultrastructural changes are preceded by increases in absorbance below 400 nm. These changes are inhibited by Ar or N2 atmospheres and appear to be due primarily to oxidative damage to the polyunsaturated fatty acids of the membrane lipids. Loss of polyunsaturated fatty acids, formation of malonaldehyde and fluorescent products characteristic of lipid oxidation accompany the spectral alterations. The elevated ultraviolet absorbance can largely be removed from the membranes by gentle extraction of the lipids using phospholipase C and hexane without changing the visible absorbance of rhodopsin.We have found a large seasonal variation in the endogenous level of α-tocopherol (vitamin E) in the bovine rod outer segment preparations. For much of the year we find that the rod outer segment membranes contain higher levels of α-tocopherol than have been previously reported in biological membranes. Rod outer segments which are low in endogenous tocopherol can be protected from oxygen damage by adding exogenous tocopherol. The rod outer segments are extremely susceptible to oxygen damage due to the unusually high content of polyunsaturated fatty acids in the membrane lipids. The presence of tocopherol inhibits oxygen damage but does not eliminate it. The tocopherol in the rod outer segments is consumed in air, thus complete protection from peroxidation in vitro requires an inert atmosphere as well as high levels of tocopherol.This work suggests that extensive precautions against oxidative degradation should also be employed in studies of other membrane systems where important deleterious effects of oxygen may be less obvious.  相似文献   

3.
In the present study we have investigated the effect of partially purified retinal fatty acid binding protein (FABP) against nonenzymatic lipid peroxidation stimulated by hydroperoxides derived from fatty acids on rod outer segment (ROS) membranes. Linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) were prepared from linoleic acid, arachidonic acid and docosahexaenoic acid, respectively, by means of lipoxidase. ROS membranes were peroxidized using an ascorbate-Fe(+2) experimental system. The effect on the peroxidation of ROS containing different amounts of lipid hydroperoxides (LOOH) was studied; ROS deprived of exogenously added LOOH was utilized as control. The degradative process was measured simultaneously by determining chemiluminescence and fatty acid composition of total lipids isolated from ROS. The addition of hydroperoxides to ROS produced a marked increase in light emission. This increase was hydroperoxide concentration-dependent. The highest value of activation was produced by DHP. The decrease percentage of the more polyunsaturated fatty acids (PUFAs) (20:4 n6 and 22:6 n3) was used to evaluate the fatty acid alterations observed during the process. We have compared the fatty acid composition of total lipids isolated from native ROS and peroxidized ROS that were incubated with and without hydroperoxides. The major difference in the fatty acid composition was found in the docosahexaenoic acid content, which decreased by 45.51+/-1.07% in the peroxidized group compared to native ROS; the decrease was even higher, 81.38+/-1.11%, when the lipid peroxidation was stimulated by DHP. Retinal FABP was partially purified from retinal cytosol. Afterwards, we measured its effect on the reaction of lipid peroxidation induced by LOOH. As a result, we observed a decrease of chemiluminescence (inhibition of lipid peroxidation) when adding increasing amounts (0.2 to 0.6 mg) of retinal FABP to ROS. The inhibitory effect reaches its highest value in the presence of DHP (41.81+/-10.18%). Under these conditions, bovine serum albumin (BSA) produces a smaller inhibitory effect (20.2+/-7.06%) than FABP.  相似文献   

4.
This paper reviews recent data relevant to the antioxidant effects of melatonin with special emphasis on the changes produced in polyunsaturated fatty acids located in the phospholipids of biological membranes. The onset of lipid peroxidation within cellular membranes is associated with changes in their physicochemical properties and with the impairment of protein functions located in the membrane environment. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. These processes combine to produce changes in the biophysical properties of membranes that can have profound effects on the activity of membrane-bound proteins. This review deals with aspects for lipid peroxidation of biological membranes in general, but with some emphasis on changes of polyunsaturated fatty acids, which arise most prominently in membranes and have been studied extensively in our laboratory. The article provides current information on the effect of melatonin on biological membranes, changes in fluidity, fatty acid composition and lipid-protein modifications during the lipid peroxidation process of photoreceptor membranes and modulation of gene expression by the hormone and its preventive effects on adriamycin-induced lipid peroxidation in rat liver. Simple model systems have often been employed to measure the activity of antioxidants. Although such studies are important and essential to understand the mechanisms and kinetics of antioxidant action, it should be noted that the results of simple in vitro model experiments cannot be directly extrapolated to in vivo systems. For example, the antioxidant capacity of melatonin, one of the important physiological lipophilic antioxidants, in solution of pure triglycerides enriched in omega-3 polyunsaturated fatty acids is considerably different from that in subcellular membranes.  相似文献   

5.
The lipid composition has been determined for rhabdomeric photoreceptor membranes of Limulus, and these data are compared with those from photoreceptor membranes of albino rats. The comparison is of interest because the membranes of these two photoreceptor cells regulate ionic transport differently during the response to illumination. 1. Phospholipid class composition of Limulus is similar, but not identical, to that of rats. The major differences are a greater percentage of sphingomyelin in Limulus and a greater percentage of phosphatidylethanolamine in the rat. 2. Ethanolamine plasmalogens, not observed in rat photoreceptor membranes, are present in Limulus photoreceptor fractions. 3. The level of cholesterol in Limulus is higher than that usually reported for vertebrate rod outer segments. 4. The predominant polyunsaturated fatty acids of Limulus photoreceptor membrane phospholipids are 20: 4(n-6) and 20: 5(n-3) with only traces of 22: 6(n-3). This is in sharp contrast with the large percentages of 22: 6(n-3) found in rat photoreceptors. 5. The fatty acid distributions of both membrane systems are highly unsaturated, but the ratio of (n-3) to (n-6) polyunsaturates is only 1.7 for Limulus as compared to 4.6 for rat.  相似文献   

6.
In the present study it was investigated if soluble-binding proteins for fatty acids (FABPs) present in neural retina show protection from in vitro lipoperoxidation of rod outer segment membranes (ROS). After incubation of ROS in an ascorbate-Fe++ system, at 37°C during 90-120 min, the total cpm originated from light emission (chemiluminescence) was found to be lower in those membranes incubated in the presence of soluble binding proteins for fatty acids. The fatty acid composition of rod outer segment membranes was substantially modified when subjected to non-enzymatic lipoperoxidation with a considerable decrease of docosahexaenoic acid (22:6 n-3) and arachidonic acid (20:4 n-6). As a result of this, the unsaturation index, a parameter based on the maximal rate of oxidation of specific fatty acids was higher in the native and control membranes when compared with peroxidized ones. A similar decrease of chemiluminescence was observed with the addition of increasing concentrations of native or delipidated FABP retinal containing fractions to rod outer segment membranes. These results indicate that soluble proteins with fatty acid binding properties may act as antioxidant protecting rod outer segment membranes from deleterious effect.  相似文献   

7.
The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.  相似文献   

8.
The ability of surfactant protein A (SP-A) to inhibit the ascorbate-Fe(2+) induced lipid peroxidation of polyunsaturated fatty acids found in porcine lung surfactant (surfacen) was assessed by measuring the light emission - chemiluminescence during a 180-min incubation period at 37 degrees C. The light emission (chemiluminescence) was concentration dependent. Changes in the fatty acid composition of surfacen were observed when the lung surfactant was incubated in an ascorbate-Fe(2+) system. The main polyunsaturated fatty acids C18:2 n6 and C20:4 n6 found in the lung surfactant decreased considerably after a 180-min lipid peroxidation process. Native SP-A isolated from pig lungs inhibited oxidation of surfactant long chain polyunsaturated fatty acids, mainly arachidonic acid, in a dose-dependent fashion that was half-maximal (60% inhibition) at a concentration of 2.0 microg/ml and almost complete (73.6% inhibition) at 4.0 microg/ml, as indicated by inhibition of light emission and fatty acid composition analysis. At the highest concentration of lung SP-A used a very good correlation between the protection of the most polyunsaturated fatty acids and inhibition of light emission was observed.  相似文献   

9.
The effect of tocopherol, all-trans retinol and retinyl palmitate on the non enzymatic lipid peroxidation induced by ascorbate-Fe2+ of rod outer segment membranes isolated from bovine retina was examined. The inhibition of light emission (maximal induced chemiluminescence) by tocopherol, all-trans retinol and retinyl palmitate was concentration dependent. All trans retinol showed a substantial degree of inhibition against ascorbate-Fe2+ induced lipid peroxidation in rod outer segment membranes that was 10 times higher than the observed in the presence of either tocopherol or retinyl palmitate. Inhibition of lipid peroxidation of rod outer segment membranes by tocopherol and retinyl palmitate was almost linear for up to 0,5 mol vitamin/mg membrane protein, whereas all-trans retinol showed linearity up to 0,1 mol vitamin/mg membrane protein. Incubation of rod outer segments with increasing amounts of low molecular weight cytosolic proteins carrying 1-[14C] linoleic acid, [3H] retinyl palmitate or [3H] all-trans retinol during the lipid peroxidation process produced a net transfer of ligand from soluble protein to membranes. Linoleic acid was 4 times more effectively transferred to rod outer segment membranes than all-trans retinol or retinyl palmitate. Incubation of rod outer segments with delipidated low molecular weight cytosolic proteins produced inhibition of lipid peroxidation. The inhibitory effect was increased when the soluble retinal protein fraction containing a tocopherol was used. These data provide strong support for the role of all-trans retinol as the major retinal antioxidant and open the way for many fruitful studies on the interaction and precise roles of low molecular weight cytosolic retinal proteins involved in the binding of antioxidant hydrophobic compounds with rod outer segments.  相似文献   

10.
Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of α and β subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel β-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only ∼ 8% of disks and ∼ 12% of ROS plasma membrane.  相似文献   

11.
Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.  相似文献   

12.
The fatty acid composition of retinal tissues was measured in rats maintained for 26–32 weeks on each of the following diets: a purified basal diet deficient in α-tocopherol and selenium, an identical control diet supplemented with α-tocopherol and selenium, and a commercial laboratory rat chow. Dietary deficiencies of antioxidant nutrients were found to cause a large decrease in total polyunsaturated fatty acids in the retinal pigment epithelium, a small decrease in the retinal rod outer segments, but no change in the whole retina or liver when compared to tissues from animals fed the vitamin E- and selenium-supplemented control diet. The polyunsaturated fatty acid content which we have observed for the retinal pigment epithelium from rats fed commercial lab chow is similar to that which we observed for bovine retinal pigment epithelium.Our results indicate that changes in fatty acid composition are not generalized to all tissues in severely antioxidant-deficient animals, but that changes do occur in some tissues, such as the retinal pigment epithelium, which appears to be particularly sensitive to in vivo lipid peroxidation.  相似文献   

13.
The fatty acid composition of retinal tissues was measured in rats maintained for 26--32 weeks on each of the following diets: a purified basal diet deficient in alpha-tocopherol and selenium, an identical control diet supplemented with alpha-tocopherol and selenium, and a commerical laboratory rat chow. Dietary deficiencies of antioxidant nutrients were found to cause a large decrease in total polyunsaturated fatty acids in the retinal pigment epithelium, a small decrease in the retinal rod outer segments, but no change in the whole retina or liver when compared to tissues from animals fed the vitamin E- and selenium-supplemented control diet. The polyunsaturated fatty acid content which we have observed for the retinal pigment epithelium from rats fed commerical lab chow is similar to that which we observed for bovine retinal pigment epithelium. Our results indicate that changes in fatty acid composition are not generalized to all tissues in severely antioxidant-deficient animals, but that changes do occur in some tissues, such as the retinal pigment epithelium, which appears to be particularly sensitive to in vivo lipid peroxidation.  相似文献   

14.
Bovine rod outer segments (ROS) contain soluble superoxide dismutase (SOD) which from cyanide sensitivity and electrophoretic mobility appears identical to CuZn SOD of erythrocytes. Enzyme activity of ROS extracts is 200–400 times as much as remainder of retina. Frog ROS also contains a cyanide-sensitive SOD which is not due to erythrocyte contamination since the retina is avascular. SOD in ROS may inhibit free radical oxidation of polyunsaturated fatty acids. In light, high oxygen concentrations in developing retina may activate lipid peroxidation leading to retrolental fibroplasia. High concentrations of ascorbic acid in the retina may act as a protective mechanism against superoxide.  相似文献   

15.
This study analyzes the effect of cellular retinol-binding protein (CRBP), partially purified from retinal pigment epithelium (RPE) cytosol, on the non-enzymatic lipid peroxidation induced by fatty acid hydroperoxides of mitochondrial membranes isolated from bovine RPE. The effect of different amounts (50, 75 and 100 nmol) of linoleic acid hydroperoxide (LHP), arachidonic acid hydroperoxide (AHP) and docosahexaenoic acid hydroperoxide (DHP) on the lipid peroxidation of RPE mitochondria was studied; RPE mitochondria deprived of exogenously added hydroperoxide was utilized as control. The process was measured simultaneously by determining chemiluminescence as well as polyunsaturated fatty acid (PUFA) degradation of total lipids isolated from RPE mitochondria. The addition of hydroperoxides to RPE mitochondria produces a marked increase in light emission that was hydroperoxide concentration dependent. The highest value of activation was produced by LHP. The major difference in the fatty acid composition of total lipids isolated from native and peroxidized RPE mitochondria incubated with and without hydroperoxides was found in the docosahexaenoic acid content, this decreased 40.90+/-3.01% in the peroxidized group compared to native RPE mitochondria. The decrease was significantly high: 86.32+/-2.57% when the lipid peroxidation was stimulated by 100 nmol of LHP. Inhibition of lipid peroxidation (decrease of chemiluminescence) was observed with the addition of increasing amounts (100-600 microg) of CRBP to RPE mitochondria. The inhibitory effect reaches the highest values in the presence of LHP.  相似文献   

16.
Rat lenses in organ culture which are exposed to bovine rod outer segments (ROS) or to the major fatty acid of ROS, docosahexaenoic acid, are impaired in their ability to accumulate radiolabeled compounds which lenses normally accumulate by active processes. The extent of lens damage correlates well with the extent of lipid peroxidation in the culture medium as assessed by the thiobarbituric acid assay. Addition of vitamin E to the medium inhibits the effect on the lens while addition of Fe-ADP complexes potentiates the effect. Thus, the lens damage appears to be attributable to toxic species generated by peroxidation of the polyunsaturated lipid added to the culture medium. Toxic aldehyde products appear to be major mediators of the lens damage, since semi-carbazide, which avidly reacts with aldehydes, can protect lenses in this system. These findings may have relevance to the cataracts clinically associated with retinal degenerative diseases such as retinitis pigmentosa. The highly membranous photoreceptor cells are extremely rich in polyunsaturated lipid. Degeneration of these cells, which is the primary pathology in such diseases, would likely lead to peroxidation with generation of toxic products within the eye. Such products could potentially produce secondary damage to other ocular structures including the lens.  相似文献   

17.
Using polyacrylamide gel electrophoresis in the presence of Na-SDS, the oligomerization of membrane proteins of the retinal rod outer segments of the frog and the wall-eyed pollock and of rabbit skeletal muscle sarcoplasmic reticulum was studied. It was shown that under storage of the retinal rod outer segments the rhodopsin oligomerization is inhibited by the lipid peroxidation inhibitor--ionol. Similar oligomerization was observed under induction of lipid peroxidation in the membranes; the accumulation of the lipid peroxidation product--malonic dialdehyde--was accompanied by disappearance of the rhodopsin monomeric form in the outer segments. The cross-linking agent--glutaric dialdehyde--also causes oligomerization of the rhodopsins. Similar aggregation is also characteristic of the major protein of the sarcoplasmic reticulum fragments, i. e. Ca2+-dependent ATP-ase. Thus, one of the main changes in the protein content of biomembranes under lipid peroxidation is the oligomerization of integral proteins due to their interaction with bifunctional reagents, i. e. lipid peroxidation products.  相似文献   

18.
Prasad A  Pospíšil P 《PloS one》2011,6(7):e22345
Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes.  相似文献   

19.
A procedure for isolating the carotenoid-containing oil droplets of cone retinal photoreceptors of Gallus domesticus is described. The oil droplets, composed almost entirely of neutral lipids and carotenoids, have been separated into ten chromatographic components. Similar separations have been carried out on the total retinal neutral lipids for comparison. The neutral lipids represented 26.1% of the total retinal lipid. Cholesterol, cholesterol ester, mono-, di- and triacylglycerols represented 92.6% of the total neutral lipid. Each of these and other minor neutral lipid components were also present in the lipids extracted from the isolated oil droplets in correspondingly similar concentrations. However, the concentrations of carotenoids were greatly enriched in the neutral lipids of the oil droplets. Each of the major fatty acyl-containing neutral lipids from the chromatography of oil droplet lipids is greatly enriched in polyunsaturated fatty acids when compared with the corresponding component from the total neutral lipid chromatography. In the acylglycerols and free fatty acid fraction from the oil droplets, linoleic and arachidonic acid together represented 52-83% of the total polyunsaturated fatty acids present. The remainder was generally distributed about equally among six other acids. Except for the diacylglycerol fraction, linoleic acid was usually the most enriched acid in a specific oil droplet fraction when compared with any other polyunsaturated fatty acids. A similar pattern of polyunsaturated fatty acid enrichment observed in the fatty acids of the outer segment phospholipids relative to the corresponding total phospholipid fractions of this cone rich retina (Johnston, D. and Hudson, R.A. (1974) Biochim. Biophys. Acta 369, 269) suggest possible metabolic relationships between the oil droplet neutral lipids and the outer segment membrane phospholipids of the cone photoreceptors. A mechanism for the accumulation of the carotenoids in the oil droplets is also discussed.  相似文献   

20.
We have studied the generation of volatile hydrocarbons by fatty acid-modified L1210 leukemia cells in tissue culture as a measure of lipid peroxidation. There was considerable generation of ethane, and this was dependent on cell number and Fe2+ concentration; it was eliminated by antioxidants and augmented by ascorbic acid. The assay was sensitive and reproducible; ethane was detected when as little as 0.03% of the cellular n-3 (omega-3) fatty acids were peroxidized. To gain further understanding we used a lipid modification model that allows study of cells enriched with fatty acids of different degrees of unsaturation. The quantity of ethane generated was greatest by cells modified with fatty acids of the n-3 family, and there was a high direct correlation of percentage of n-3 fatty acids contained in cellular lipids with peroxidation as measured by ethane generation. Ethane generation was more sensitive in detecting peroxidation than loss of polyunsaturated fatty acids. We conclude that lipid-supplemented leukemic cells produce ethane, and that the rate of generation is a sensitive, quantitative, and highly useful measure of lipid peroxidation when small amounts of iron are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号